COVID-19 has challenged the healthcare systems worldwide. To quickly identify successful diagnostic and therapeutic approaches large data sharing approaches are inevitable. Though organizational clinical data are abundant, many of them are available only in isolated silos and largely inaccessible to external researchers. To overcome and tackle this challenge the university medicine network (comprising all 36 German university hospitals) has been founded in April 2020 to coordinate COVID-19 action plans, diagnostic and therapeutic strategies and collaborative research activities. 13 projects were initiated from which the CODEX project, aiming at the development of a Germany-wide Covid-19 Data Exchange Platform, is presented in this publication. We illustrate the conceptual design, the stepwise development and deployment, first results and the current status.
Background Clinical trials are the gold standard for advancing medical knowledge and improving patient outcomes. For their success, an appropriately sized cohort is required. However, patient recruitment remains one of the most challenging aspects of clinical trials. Information technology (IT) support systems—for instance, patient recruitment systems—may help overcome existing challenges and improve recruitment rates, when customized to the user needs and environment. Objective The goal of our study is to describe the status quo of patient recruitment processes and to identify user requirements for the development of a patient recruitment system. Methods We conducted a web-based survey with 56 participants as well as semistructured interviews with 33 participants from 10 German university hospitals. Results We here report the recruitment procedures and challenges of 10 university hospitals. The recruitment process was influenced by diverse factors such as the ward, use of software, and the study inclusion criteria. Overall, clinical staff seemed more involved in patient identification, while the research staff focused on screening tasks. Ad hoc and planned screenings were common. Identifying eligible patients was still associated with significant manual efforts. The recruitment staff used Microsoft Office suite because tailored software were not available. To implement such software, data from disparate sources will need to be made available. We discussed concrete technical challenges concerning patient recruitment systems, including requirements for features, data, infrastructure, and workflow integration, and we contributed to the support of developing a successful system. Conclusions Identifying eligible patients is still associated with significant manual efforts. To fully make use of the high potential of IT in patient recruitment, many technical and process challenges have to be solved first. We contribute and discuss concrete technical challenges for patient recruitment systems, including requirements for features, data, infrastructure, and workflow integration.
Background The consent management is an essential component for supporting the implementation of consents and withdrawals and thus, the realisation of patient’s rights. In MIRACUM, one of the four consortia of the Medical Informatics Initiative (MII), ten university hospitals intend to integrate the generic Informed Consent Service® (gICS) in their Data Integration Center (DIC). To provide a tool that supports the local workflows of the MIRACUM sites, the gICS should be improved. Methods We used three standardised questionnaires with 46 questions to elicit requirements from the ten sites. Each site answered the questions from the current and the desired future perspective. This made it possible to understand the individual processes at each site and it was possible to identify features and improvements that were generally necessary. Results The results of the survey were classified according to their impact on the gICS. Feature requests of new functionalities, improvements of already implemented functionalities and conceptual support for implementing processes were identified. This is the basis for an improved gICS release to support the ten sites’ individual consent management processes. Conclusions A release plan for the feature requests and improvements was coordinated with all sites. All sites have confirmed that the implementation of these features and enhancements will support their software-based consent management processes.
Background The identity management is a central component in medical research. Patients are recruited from various sites, which requires an error tolerant record linkage method, to ensure that patients are registered only once. In large research projects or institutions, the identity management has to deal with several thousands or millions of patients. In environments with large numbers of patients the register process could lead to high runtimes caused by record linkage. The Central Biomaterial Bank of the Charité (ZeBanC) searched for an identity management solution, which can handle millions of patients in large research projects with an acceptable performance. The goal of this paper was to simulate the registration of several million patients using the E-PIX service at Charité – Universitätsmedizin Berlin. The E-PIX service was evaluated in terms of needed runtimes, memory requirements, and processor utilization. A total of at least 20 million patients had to be registered. The runtimes to register patients into databases with various sizes should be examined, and the maximum number of patients, which the E-PIX service could handle, should be determined. Methods Tools were set up or developed to measure the needed runtimes, the memory used and the processor usage to register patients into various sizes of databases. To generate runtimes close to reality, modified patient data based on transposed real patient data were used for the simulation. The transposed patient data were sent to E-PIX to measure the runtimes of the registration process. This measurement was repeated for various database sizes. Results E-PIX is suitable to manage multi-million patients within a dataset. With the given hardware, it was possible to register a total of more than 30 million patients. It was possible to register more than 16 thousand patients per day into this database. Conclusions The E-PIX tool fulfills the requirements of the Charité to be used for large research projects. The use of E-PIX is intended for the research context in the Charité.
Background The Federal Ministry of Education and Research of Germany (BMBF) funds a network of university medicines (NUM) to support COVID-19 and pandemic research at national level. The “COVID-19 Data Exchange Platform” (CODEX) as part of NUM establishes a harmonised infrastructure that supports research use of COVID-19 datasets. The broad consent (BC) of the Medical Informatics Initiative (MII) is agreed by all German federal states and forms the legal base for data processing. All 34 participating university hospitals (NUM sites) work upon a harmonised infrastructural as well as legal basis for their data protection-compliant collection and transfer of their research dataset to the central CODEX platform. Each NUM site ensures that the exchanged consent information conforms to the already-balloted HL7 FHIR consent profiles and the interoperability concept of the MII Task Force “Consent Implementation” (TFCI). The Independent Trusted Third-Party (TTP) of the University Medicine Greifswald supports data protection-compliant data processing and provides the consent management solutions gICS. Methods Based on a stakeholder dialogue a required set of FHIR-functionalities was identified and technically specified supported by official FHIR experts. Next, a “TTP-FHIR Gateway” for the HL7 FHIR-compliant exchange of consent information using gICS was implemented. A last step included external integration tests and the development of a pre-configured consent template for the BC for the NUM sites. Results A FHIR-compliant gICS-release and a corresponding consent template for the BC were provided to all NUM sites in June 2021. All FHIR functionalities comply with the already-balloted FHIR consent profiles of the HL7 Working Group Consent Management. The consent template simplifies the technical BC rollout and the corresponding implementation of the TFCI interoperability concept at the NUM sites. Conclusions This article shows that a HL7 FHIR-compliant and interoperable nationwide exchange of consent information could be built using of the consent management software gICS and the provided TTP-FHIR Gateway. The initial functional scope of the solution covers the requirements identified in the NUM-CODEX setting. The semantic correctness of these functionalities was validated by project-partners from the Ludwig-Maximilian University in Munich. The production rollout of the solution package to all NUM sites has started successfully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.