Existing Delta Headwaters Project (DHP) watershed stabilization studies are focused on restoration and stabilization of degraded stream systems. The original watershed studies formerly under the Demonstration Erosion Control (DEC) Project started in the mid 1980s. The watershed stabilization activities are continuing, and because of the vast number of degraded watersheds and limited amount of yearly funding, there is a need for developing a rapid watershed assessment approach to determine which watersheds to prioritize for further work. The goal of this project is to test the FluvialGeomorph (FG) toolkit to determine if the Rapid Geomorphic Assessment approach can identify channel stability trends in Campbell Creek and its main tributary. The FG toolkit (Haring et al. 2019; Haring et al. 2020) is a new rapid watershed assessment approach using high-resolution terrain data (Light Detection and Ranging [LiDAR]) to support U.S. Army Corps of Engineers (USACE) watershed planning. One of the principal goals of the USACE SMART (Specific Measureable Attainable Risk-Informed Timely) Planning is to leverage existing data and resources to complete studies. The FG approach uses existing LiDAR to rapidly assess either reach-specific analysis for smaller more focused studies or larger watersheds or ecosystems. The rapid assessment capability can reduce the time and cost of planning by using existing information to complete a preliminary watershed assessment and provide rapid results regarding where to focus more detailed study efforts.
The purpose of this review is to highlight LiDAR data usage for geomorphic studies and compare to other remote sensing technologies. This review further identifies survey efficiencies and issues that can be problematic in using LiDAR digital elevation models (DEMs) in completing surveys and geomorphic analysis. US Army Corps of Engineers (USACE) geospatial data collection guidance (EM 1110-1-1000) (USACE 2015) aligns with the American Society for Photogrammetry and Remote Sensing Positional Accuracy Standards for Digital Geospatial Data (ASPRS 2014). Geomorphic assessment technologies are rapidly evolving, and LiDAR data collection methods are at the forefront. The FluvialGeomorph (FG) toolbox, developed to support USACE watershed planning, is a recent example of the use of LiDAR high-resolution terrain data to provide a new, efficient approach for rapid watershed assessments (Haring et al. 2020; Haring and Biedenharn 2021). However, there are advantages and disadvantages in using LiDAR data compared to other remote sensing technologies and traditional topographic field survey methods.
A cedar tree revetment is a bioengineering technique intended to stabilize eroding stream banks using longitudinally placed cedar trees. This technique, which has been implemented on many rivers and streams across the United States, has been proposed as a less expensive, ecologically compatible bank stabilization method. The limited documentation of these types of bioengineering techniques indicates high failure rates. River engineers need to understand the potential failure modes of cedar tree revetments, so they can take appropriate countermeasures when applying this technique. This article documents four common failure modes observed during postproject site assessments on 12 streams in eastern Kansas, USA that took place in 2019 and 2020. These modes are (1) bed degradation with structure perching, (2) fail-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.