There is a growing interest in the use of Inertial Measurement Unit (IMU)-based systems that employ gyroscopes for gait analysis. We describe an improved IMU-based gait analysis processing method that uses gyroscope angular rate reversal to identify the start of each gait cycle during walking. In validation tests with six subjects with Parkinson disease (PD), including those with severe shuffling gait patterns, and seven controls, the probability of True-Positive event detection and False-Positive event detection was 100% and 0%, respectively. Stride time validation tests using high-speed cameras yielded a standard deviation of 6.6 ms for controls and 11.8 ms for those with PD. These data demonstrate that the use of our angular rate reversal algorithm leads to improvements over previous gyroscope-based gait analysis systems. Highly accurate and reliable stride time measurements enabled us to detect subtle changes in stride time variability following a Parkinson's exercise class. We found unacceptable measurement accuracy for stride length when using the Aminian et al gyro-based biomechanical algorithm, with errors as high as 30% in PD subjects. An alternative method, using synchronized infrared timing gates to measure velocity, combined with accurate mean stride time from our angular rate reversal algorithm, more accurately calculates mean stride length.
All three of the procedures were effective in obtaining root coverage and improved clinical parameters on mandibular incisors. Overall, the DP + CT and TUN-LAT + CT procedures had greater mean root coverage than the CPF + CT technique. Based on this study, when treating defects > or =3 mm deep, one should consider using the DP + CT or TUN-LAT + CT rather than the CPF + CT. Additionally, when treating multiple defects at a time, one should consider using the DP + CT or TUN-LAT + CT rather than the CPF + CT. In cases where an increased amount of keratinized tissue is desired, based on this study, the DP + CT may be the best procedure to use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.