Mitochondrial abnormalities have been identified as a central mechanism in multiple neurodegenerative diseases and, therefore, the mitochondria have been explored as a therapeutic target. This review will focus on the evidence for mitochondrial abnormalities in the two most common neurodegenerative diseases, Parkinson's disease and Alzheimer's disease. In addition, we discuss the main strategies which have been explored in these diseases to target the mitochondria for therapeutic purposes, focusing on mitochondrially targeted antioxidants, peptides, modulators of mitochondrial dynamics and phenotypic screening outcomes.
Parkinson’s Disease is the most common neurodegenerative movement disorder globally, with prevalence increasing. There is an urgent need for new therapeutics which are disease-modifying rather than symptomatic. Mitochondrial dysfunction is a well-documented mechanism in both sporadic and familial Parkinson’s Disease. Furthermore, ursodeoxycholic acid (UDCA) has been identified as a bile acid which leads to increased mitochondrial function in multiple in vitro and in vivo models of Parkinson’s Disease. Here, we describe the synthesis of novel C-nor-D-homo bile acid derivatives and the 12-hydroxy-methylated derivative of lagocholic acid (7) and their biological evaluation in fibroblasts from patients with either sporadic or LRRK2 mutant Parkinson’s Disease. These compounds boost mitochondrial function to a similar level or above that of UDCA in many assays; notable, however, is their ability to boost mitochondrial function to a higher level and at lower concentrations than UDCA specifically in the fibroblasts from LRRK2 patients. Our study indicates that novel bile acid chemistry could lead to the development of more efficacious bile acids which increase mitochondrial function and ultimately cellular health at lower concentrations proving attractive potential novel therapeutics for Parkinson’s Disease.
PGC-1α plays a central role in maintaining the mitochondrial and energy metabolism homeostasis, linking external stimuli to the transcriptional co-activation of genes involved in adaptive and age-related pathways. The carboxyl-terminus encodes a serine/arginine-rich (RS) region and a putative RNA recognition motif, however potential RNA-processing role(s) have remained elusive for the past 20 years. Here, we show that the RS domain of human PGC-1α directly interacts with RNA and the nuclear RNA export factor NXF1. Inducible depletion of endogenous PGC-1α and expression of RNAi-resistant RS-deleted PGC-1α further demonstrate that the RNA-binding activity is required for nuclear export of co-activated transcripts and mitochondrial homeostasis. Moreover, a quantitative proteomics approach confirmed PGC-1α-dependent RNA transport and mitochondrial-related functions, identifying also novel mRNA nuclear export targets in age-related telomere maintenance. Discovering a novel function for a major cellular homeostasis regulator provides new directions to further elucidate the roles of PGC-1α in gene expression, metabolic disorders, ageing and neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.