The wetting of soft elastic substrates exhibits many features that have no counterpart on rigid surfaces. Modelling the detailed elastocapillary interactions is challenging, and has so far been limited to single contact lines or single drops. Here we propose a reduced long-wave model that captures the main qualitative features of statics and dynamics of soft wetting, but which can be applied to ensembles of droplets. The model has the form of a gradient dynamics on an underlying free energy that reflects capillarity, wettability and compressional elasticity. With the model we first recover the double transition in the equilibrium contact angles that occurs when increasing substrate softness from ideally rigid towards very soft (i.e., liquid). Second, the spreading of single drops of partially and completely wetting liquids is considered showing that known dependencies of the dynamic contact angle on contact line velocity are well reproduced. Finally, we go beyond the single droplet picture and consider the coarsening for a two-drop system as well as for a large ensemble of drops. It is shown that the dominant coarsening mode changes with substrate softness in a nontrivial way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.