Background and Purpose
Despite a growing awareness, annual losses of honeybee colonies worldwide continue to reach threatening levels for food safety and global biodiversity. Among the biotic and abiotic stresses probably responsible for these losses, pesticides, including those targeting ionotropic GABA receptors, are one of the major drivers. Most insect genomes include the ionotropic GABA receptor subunit gene, Rdl, and two GABA‐like receptor subunit genes, Lcch3 and Grd. Most studies have focused on Rdl which forms homomeric GABA‐gated chloride channels, and a complete analysis of all possible molecular combinations of GABA receptors is still lacking.
Experimental Approach
We cloned the Rdl, Grd, and Lcch3 genes of Apis mellifera and systematically characterized the resulting GABA receptors expressed in Xenopus oocytes, using electrophysiological assays, fluorescence microscopy and co‐immunoprecipitation techniques.
Key Results
The cloned subunits interacted with each other, forming GABA‐gated heteromeric channels with particular properties. Strikingly, these heteromers were always more sensitive than AmRDL homomer to all the pharmacological agents tested. In particular, when expressed together, Grd and Lcch3 form a non‐selective cationic channel that opens at low concentrations of GABA and with sensitivity to insecticides similar to that of homomeric Rdl channels.
Conclusion and Implications
For off‐target species like the honeybee, chronic sublethal exposure to insecticides constitutes a major threat. At these concentration ranges, homomeric RDL receptors may not be the most pertinent target to study and other ionotropic GABA receptor subtypes should be considered in order to understand more fully the molecular mechanisms of sublethal toxicity to insecticides.
Efficient immune responses require Ca2+ fluxes across ORAI1 channels during engagement of T cell receptors (TCR) at the immune synapse (IS) between T cells and antigen presenting cells. Here, we show that ZDHHC20-mediated S-acylation of the ORAI1 channel at residue Cys143 promotes TCR recruitment and signaling at the IS. Cys143 mutations reduced ORAI1 currents and store-operated Ca2+ entry in HEK-293 cells and nearly abrogated long-lasting Ca2+ elevations, NFATC1 translocation, and IL-2 secretion evoked by TCR engagement in Jurkat T cells. The acylation-deficient channel remained in cholesterol-poor domains upon enforced ZDHHC20 expression and was recruited less efficiently to the IS along with actin and TCR. Our results establish S-acylation as a critical regulator of ORAI1 channel trafficking and function at the IS and reveal that ORAI1 S-acylation enhances TCR recruitment to the synapse.
Recruitment of STIM proteins to cortical ER (cER) domains forming membrane contact sites (MCS) mediate the store-operated Ca2+ entry (SOCE) pathway essential for human immunity. The cER is dynamically regulated by STIM and tethering proteins during SOCE, but the ultrastructural rearrangement and functional consequences of cER remodelling are unknown. Here, we express natural (E-Syt1/2) and artificial (MAPPER-S/L) protein tethers in HEK-293T cells and correlate the changes in cER length and gap distance measured by electron microscopy with ionic fluxes. Native cER cisternae extended during store depletion and remained elongated at constant ER-PM gap distance during subsequent Ca2+ elevations. Tethering proteins enhanced store-dependent cER expansion, anchoring the enlarged cER at tether-specific gap distances of 12-15nm (E-Syts) and 5-9nm (MAPPERs). Cells with artificially extended cER had reduced SOCE and reduced agonist-induced Ca2+ release. SOCE remained modulated by calmodulin and exhibited enhanced Ca2+-dependent inhibition. We propose that cER expansion mediated by ER-PM tethering at a close distance negatively regulates SOCE by confining STIM-ORAI complexes to the periphery of enlarged cER sheets, a process that might participate in the termination of store-operated Ca2+ entry.
In this news and views, we discuss our recent publication where we described how ER-PM membrane contact sites (MCS) are modulated during store operated calcium entry (SOCE). We also examine why enforcing ER-PM MCS by tethering proteins does not not enhance, but rather inhibits SOCE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.