Previous work (M. Sagisaka, et al. Langmuir 31 (2015) 7479-7487), showed the most effective fluorocarbon (FC) and hydrocarbon (HC) chain lengths in the hybrid surfactants FCm-HCn (sodium 1-oxo-1-[4-(perfluoroalkyl)phenyl]alkane-2-sulfonates, where m = FC length and n = HC length) were m and n = 6 and 4 for water solubilization, whereas m 6 and n 6, or m 6 and n 5, were optimal chain lengths for reversed micelle elongation in supercritical CO. To clarify why this difference of only a few methylene chain units is so effective at tuning the solubilizing power and reversed micelle morphology, nanostructures of water-in-CO (W/CO) microemulsions were investigated by high-pressure small-angle neutron scattering (SANS) measurements at different water-to-surfactant molar ratios (W) and surfactant concentrations. By modelling SANS profiles with cylindrical and ellipsoidal form factors, the FC6-HCn/W/CO microemulsions were found to increase in size with increasing W and surfactant concentration. Ellipsoidal cross-sectional radii of the FC6-HC4/W/CO microemulsion droplets increased linearly with W, and finally reached ∼39 Å and ∼78 Å at W = 85 (close to the upper limit of solubilizing power). These systems appear to be the largest W/CO microemulsion droplets ever reported. The aqueous domains of FC6-HC6 rod-like reversed micelles increased in size by 3.5 times on increasing surfactant concentration from 35 mM to 50 mM: at 35 mM, FC6-HC5 formed rod-like reversed micelles 5.3 times larger than FC6-HC6. Interestingly, these results suggest that hybrid HC-chains partition into the microemulsion aqueous cores with the sulfonate headgroups, or at the W/CO interfaces, and so play important roles for tuning the W/CO interfacial curvature. The super-efficient W/CO-type solubilizer FC6-HC4, and the rod-like reversed micelle forming surfactant FC6-HC5, represent the most successful cases of low fluorine content additives. These surfactants facilitate VOC-free, effective and energy-saving CO solvent systems for applications such as extraction, dyeing, dry cleaning, metal-plating, enhanced oil recovery and organic/inorganic or nanomaterial synthesis.
This article discusses different natural and man-made foams, with particular emphasis on the different modes of formation and stability. Natural foams, such as those produced on the sea or by numerous creatures for nests, are generally stabilised by dissolved organic carbon (DOC) molecules or proteins. In addition to this, foam nests are stabilised by multifunctional mixtures of surfactants and proteins called ranaspumins, which act together to give the required physical and biochemical stability. With regards to industrial foams, the article focuses on how various features of foams are exploited for different industrial applications. Stability of foams will be discussed, with the main focus on how the chemical nature and structure of surfactants, proteins and particles act together to produce long-lived stable foams. Additionally, foam destabilisation is considered, from the perspective of elucidation of the mechanisms of instability determined spectroscopically or by scattering methods.
The biodegradation of cellulose involves the enzymatic action of cellulases (endoglucanases), cellobiohydrolases (exoglucanases), and β-glucosidases that act synergistically. The rate and efficiency of enzymatic hydrolysis of crystalline cellulose in vitro decline markedly with time, limiting the large-scale, cost-effective production of cellulosic biofuels. Several factors have been suggested to contribute to this phenomenon, but there is considerable disagreement regarding the relative importance of each. These earlier investigations were hampered by the inability to observe the disruption of crystalline cellulose and its subsequent hydrolysis directly. Here, we show the application of high-resolution atomic force microscopy to observe the swelling of a single crystalline cellulose fiber and its-hydrolysis in real time directly as catalyzed by a single cellulase, the industrially important cellulase 7B from Trichoderma reesei. Volume changes, the root-mean-square roughness, and rates of hydrolysis of the surfaces of single fibers were determined directly from the images acquired over time. Hydrolysis dominated the early stage of the experiment, and swelling dominated the later stage. The high-resolution images revealed that the combined action of initial hydrolysis followed by swelling exposed individual microfibrils and bundles of microfibrils, resulting in the loosening of the fiber structure and the exposure of microfibrils at the fiber surface. Both the hydrolysis and swelling were catalyzed by the native cellulase; under the same conditions, its isolated carbohydrate-binding module did not cause changes to crystalline cellulose. We anticipate that the application of our AFM-based analysis on other cellulolytic enzymes, alone and in combination, will provide significant insight into the process of cellulose biodegradation and greatly facilitate its application for the efficient and economical production of cellulosic ethanol.
High-water-content water-in-supercritical CO2 (W/CO2) microemulsions are considered to be green, universal solvents, having both polar and nonpolar domains. Unfortunately, these systems generally require environmentally unacceptable stabilizers like long and/or multifluorocarbon-tail surfactants. Here, a series of catanionic surfactants having more environmentally friendly fluorinated C4–C6 tails have been studied in terms of interfacial properties, aggregation behavior, and solubilizing power in water and/or CO2. Surface tensions and critical micelle concentrations of these catanionic surfactants are, respectively, lowered by ∼9 mN/m and 100 times than those of the constituent single fluorocarbon-tail surfactants. Disklike micelles in water were observed above the respective critical micelle concentrations, implying the catanionic surfactants have a high critical packing parameter, which should be suitable for the formation of reverse micelles. Based on visual observation of phase behavior and Fourier transform infrared spectroscopic and small-angle neutron scattering studies, one of the three catanionic surfactants tested was found to form transparent single-phase W/CO2 microemulsions with a water-to-surfactant molar ratio of up to ∼50. This is the first successful demonstration of the formation of W/CO2 microemulsions by synergistic ion-pairing of anionic and cationic single-tail surfactants. This indicates that catanionic surfactants offer a promising approach to generate high-water-content W/CO2 microemulsions.
Presented here are the results for a novel class of hydrocarbon surfactants, termed trimethylsilyl hedgehogs (TMS-hedgehogs), due to the presence of silicon in the tails. By comparing the surface properties of these hybrid hedgehogs to purely hydrocarbon equivalents, links between performance and the structure are made. Namely, by controlling the molecular volume of the surfactant fragments, improvements can be made in surface coverage, generating lower surface energy monolayers. Small-angle neutron scattering (SANS) data have been collected showing that these novel surfactants aggregate to form ellipsoidal micelles which grow with increasing concentration. This study highlights the sensitive relationship between surface tension and the surfactant chain, for designing new super-efficient surfactants close to the limit of the lowest surface tensions possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.