SIRT6 is a mammalian homolog of the yeast Sir2 deacetylase that promotes longevity in yeast and invertebrates. Mice deficient for SIRT6 exhibit premature aging and genome instability. Here we show that in mammalian cells subjected to oxidative stress SIRT6 is recruited to the sites of DNA double-strand breaks (DSBs) and strongly stimulates both pathways of DSB repair, nonhomologous end joining and homologous recombination. We found that SIRT6 physically associates with PARP1 leading to stimulation of PARP1 poly-ADP-ribose polymerase activity. Mono-ADP-ribosylation activity of SIRT6 is sufficient for the activation of PARP1 in vitro, while both mono-ADP-ribosylation and deacetylation activities are required for the stimulation of DSB repair in vivo. Our results suggest that SIRT6 mono-ADP-ribosylates PARP1 on lysine 521 thereby stimulating PARP1 activity and enhancing DSB repair under oxidative stress. We propose that SIRT6 functions as a regulator integrating oxidative stress signaling and DNA damage response.
The naked mole-rat displays exceptional longevity, with a maximum lifespan exceeding 30 years1–3. This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole-rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years4,5. In addition to their longevity, naked mole-rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer2,6. Here we identify a mechanism responsible for the naked mole-rat’s cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high molecular weight hyaluronan (HA), which is over five times larger than human or mouse HA. This high molecular weight HA accumulates abundantly in naked mole rat tissues due to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signaling, as the naked mole rat cells have a higher affinity to HA than the mouse or human cells. Perturbation of the signaling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high molecular weight HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, Hyal2, naked mole-rat cells become susceptible to malignant transformation and readily form tumors in mice. We speculate that naked mole-rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species.
Summary Dietary restriction (DR) without malnutrition encompasses numerous regimens with overlapping benefits including longevity and stress resistance, but unifying nutritional and molecular mechanisms remain elusive. In a mouse model of DR-mediated stress resistance, we found that sulfur amino acid (SAA) restriction increased expression of the transsulfuration pathway (TSP) enzyme cystathionine γ-lyase (CGL), resulting in increased hydrogen sulfide (H2S) production and protection from hepatic ischemia reperfusion injury. SAA supplementation, mTORC1 activation, or chemical/genetic CGL inhibition reduced H2S production and blocked DR-mediated stress resistance. In vitro, the mitochondrial protein SQR was required for H2S-mediated protection during nutrient/oxygen deprivation. Finally, TSP-dependent H2S production was observed in yeast, worm, fruit fly and rodent models of DR-mediated longevity. Together, these data are consistent with evolutionary conservation of TSP-mediated H2S as a novel mediator of DR benefits with broad implications for clinical translation.
The naked mole-rat is the longest living rodent with a maximum lifespan exceeding 28 years. In addition to its longevity, naked mole-rats have an extraordinary resistance to cancer as tumors have never been observed in these rodents. Furthermore, we show that a combination of activated Ras and SV40 LT fails to induce robust anchorage-independent growth in naked mole-rat cells, while it readily transforms mouse fibroblasts. The mechanisms responsible for the cancer resistance of naked mole-rats were unknown. Here we show that naked mole-rat fibroblasts display hypersensitivity to contact inhibition, a phenomenon we termed ''early contact inhibition.'' Contact inhibition is a key anticancer mechanism that arrests cell division when cells reach a high density. In cell culture, naked mole-rat fibroblasts arrest at a much lower density than those from a mouse. We demonstrate that early contact inhibition requires the activity of p53 and pRb tumor suppressor pathways. Inactivation of both p53 and pRb attenuates early contact inhibition. Contact inhibition in human and mouse is triggered by the induction of p27 Kip1 . In contrast, early contact inhibition in naked mole-rat is associated with the induction of p16 Ink4a . Furthermore, we show that the roles of p16 Ink4a and p27 Kip1 in the control of contact inhibition became temporally separated in this species: the early contact inhibition is controlled by p16 Ink4a , and regular contact inhibition is controlled by p27 Kip1 . We propose that the additional layer of protection conferred by two-tiered contact inhibition contributes to the remarkable tumor resistance of the naked mole-rat.longevity ͉ p16Ink4a ͉ p53 ͉ pRb ͉ tumor suppressor
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.