This chapter explores the idea that phylogenetic diversity plays a unique role in underpinning conservation endeavour. The conservation of biodiversity is suffering from a rapid, unguided proliferation of metrics. Confusion is caused by the wide variety of contexts in which we make use of the idea of biodiversity. Characterisations of biodiversity range from all-variety-at-all-levels down to variety with respect to single variables relevant to very specifi c conservation contexts. Accepting biodiversity as the sum of a large number of individual measures results in an empirically intractable framework. However, large-scale decisions cannot be based on biodiversity variables inferred from local conservation imperatives because the variables relevant to the many systems being compared would be incommensurate with one another. We therefore need some general conception of biodiversity that would make tractable such large-scale environmental decision-marking. We categorise the large array of strategies for the measurement of biodiversity into four broad groups for consideration as general measures of biodiversity. We compare common moral justifi cations for the conservation of biodiversity and conclude that some form of instrumental value is the most plausible justifi cation for biodiversity conservation. Although this is often interpreted as a reliance on option value, we opt for a broadly consequentialist characterisation of biodiversity conservation. We conclude that the best justifi ed general measure of biodiversity will be some form of phylogenetic diversity.
One of the major developments in cancer research in recent years has been the construction of models that treat cancer as a cellular population subject to natural selection. We expand on this idea, drawing upon multilevel selection theory. Cancer is best understood in our view from a multilevel perspective, as both a byproduct of selection at other levels of organization, and as subject to selection (and drift) at several levels of organization. Cancer is a by-product in two senses. First, cancer cells co-opt signaling pathways that are otherwise adaptive at the organismic level. Second, cancer is also a by-product of features distinctive to the metazoan lineage: cellular plasticity and modularity. Applying the multilevel perspective in this way permits one to explain transitions in complexity and individuality in cancer progression. Our argument is a reply to Germain's (2012) scepticism towards the explanatory relevance of natural selection for cancer. The extent to which cancer fulfills the conditions for being a paradigmatic Darwinian population depends on the scale of analysis, and the details of the purported selective scenario. Taking a multilevel perspective clarifies some of the complexities surrounding how to best understand the relevance of evolutionary thinking in cancer progression. Keywords Cancer Á Multilevel selection Á Darwinian populations Á Tumors Á By-product of selection ''Through failure we understand design.'' Frank, 2007.
Ecological communities are seldom, if ever, biological individuals. They lack causal boundaries as the populations that constitute communities are not congruent and rarely have persistent functional roles regulating the communities' higher-level properties. Instead we should represent ecological communities indexically, by identifying ecological communities via the network of weak causal interactions between populations that unfurl from a starting set of populations. This precisification of ecological communities helps identify how community properties remain invariant, and why they have robust characteristics. This respects the diversity and aggregational nature of these complex systems while still vindicating them as units worthy of investigation.
Some critics of invasion biology have argued the invasion of ecosystems by nonindigenous species can create more valuable ecosystems. They consider invaded communities as more valuable because they potentially produce more ecosystem services. To establish that the introduction of nonindigenous species creates more valuable ecosystems, they defend that value is provisioned by ecosystem services. These services are derived from ecosystem productivity, the production and cycling of resources. Ecosystem productivity is a result of biodiversity, which is understood as local species richness. Invasive species increase local species richness and, therefore, increase the conservation value of local ecosystems. These views are disseminating to the public via a series of popular science books. Conservationists must respond to these views, and I outline a method of rejecting such arguments against controlling invasive species. Ecological systems are valuable for more than local productivity and biodiversity is not accurately described by a local species count.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.