The catalytic ability of a dinuclear Zn2+ complex of 1,3-bis-N1-(1,5,9-triazacyclododecyl)propane (3) in promoting the cleavage of an RNA model, 2-hydroxypropyl-p-nitrophenyl phosphate (HPNPP, 1), and a DNA model, methyl p-nitrophenyl phosphate (MNPP, 4), was studied in methanol solution in the presence of added CH3O- at 25 degrees C. The di-Zn2+ complex (Zn2 :3), in the presence of 1 equiv of added methoxide, exhibits a second-order rate constant of (2.75 +/- 0.10) x 10(5) M(-1) s(-1) for the reaction with 1 at s(s)pH 9.5, this being 10(8)-fold larger than the k2 value for the CH3O- promoted reaction (kOCH3 = (2.56 +/- 0.16) x 10(-3) M(-1) s(-1)). The complex is also active toward the DNA model 4, exhibiting Michaelis-Menten kinetics with a KM and kmax of 0.37 +/- 0.07 mM and (4.1 +/- 0.3) x 10(-2) s(-1), respectively. Relative to the background reactions at s(s)pH 9.5, Zn2 :3 accelerates cleavage of each phosphate diester by a remarkable factor of 1012-fold. A kinetic scheme common to both substrates is discussed. The study shows that a simple model system comprising a dinuclear Zn2+ complex and a medium effect of the alcohol solvent achieves a catalytic reactivity that approaches enzymatic rates and is well beyond anything seen to date in water for the cleavage of these phosphate diesters.
We describe the first report of RNA sequencing of 5' capped (Pol II) RNAs isolated from acutely hepatitis C virus (HCV) infected Huh 7.5 cells that provides a general approach to identifying differentially expressed annotated and unannotated genes that participate in viral-host interactions. We identified 100, 684, and 1,844 significantly differentially expressed annotated genes in acutely infected proliferative Huh 7.5 cells at 6, 48, and 72 hours, respectively (fold change ≥ 1.5 and Bonferroni adjusted p-values < 0.05). Most of the differentially expressed genes (>80%) and biological pathways (such as adipocytokine, Notch, Hedgehog and NOD-like receptor signaling) were not identified by previous gene array studies. These genes are critical components of host immune, inflammatory and oncogenic pathways and provide new information regarding changes that may benefit the virus or mediate HCV induced pathology. RNAi knockdown studies of newly identified highly upregulated FUT1 and KLHDC7B genes provide evidence that their gene products regulate and facilitate HCV replication in hepatocytes. Our approach also identified novel Pol II unannotated transcripts that were upregulated. Results further identify new pathways that regulate HCV replication in hepatocytes and suggest that our approach will have general applications in studying viral-host interactions in model systems and clinical biospecimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.