Material properties play a key role in the cellular internalization of polymeric particles. In the present study, we have investigated the effects of material characteristics such as water contact angle, zeta potential, melting temperature, and alternative activation of complement on particle internalization for pro-inflammatory, pro-angiogenic, and naïve macrophages by using biopolymers (∼600 nm), functionalized with 13 different molecules. Understanding how material parameters influence particle internalization for different macrophage phenotypes is important for targeted delivery to specific cell populations. Here, we demonstrate that material parameters affect the alternative pathway of complement activation as well as particle internalization for different macrophage phenotypes. Here, we show that the quantitative structure-activity relationship method (QSAR) previously used to predict physiochemical properties of materials can be applied to targeting different macrophage phenotypes. These findings demonstrated that targeted drug delivery to macrophages could be achieved by exploiting material parameters.
As biomaterial therapies emerge to address adipose tissue dysfunction that underlies metabolic disease, the immune response to these systems must be established. As a potential therapy, we are investigating resveratrol delivery from porous poly(lactide-co-glycolide) scaffolds designed to integrate with adipose tissue. Resveratrol was selected for its ability to protect mice and primates from high fat diet and broad anti-inflammatory properties. Herein, we report fabrication of scaffolds with high resveratrol loading that are stable and active for up to one year. In vitro release profiles indicate that drug release is biphasic with a burst release over 3 days followed by a plateau. Surprisingly, we find that PLG scaffold implanted into adipose tissue of mice promotes an anti-inflammatory environment characterized by high arginase-1 and low TNF-α and IL-6 compared to naïve unmanipulated fat. Resveratrol delivery from the scaffold augments this antiinflammatory environment by decreasing monocyte and lymphocyte numbers at the implant site and increasing expression of IL-10 and IL-13, cytokines that promote healthy adipose tissue. In terms of therapeutic applications, implant of scaffolds designed to release resveratrol into the visceral fat decreases MCP-1 expression in mice fed a high fat diet, a molecule that drives both local and systemic inflammation during obesity. Taken together, resveratrol delivery to adipose tissue using poly(lactide-co-glycolide) scaffolds is a promising therapeutic strategy for the treatment of adipose tissue inflammation that drives metabolic disease.
Lipid overload of the adipose tissue, which can be caused by overnutrition, underlies metabolic disease. We hypothesized that increasing the energy demand of adipose tissue is a promising strategy to combat excessive lipid accumulation. Resveratrol, a natural polyphenol, activates lipid catabolism in fat tissue; however, its clinical success is hindered by poor bioavailability. Here, we implanted resveratrol releasing poly(lactide‐co‐glycolide) scaffolds into epididymal fat to overcome its poor bioavailability with the goal of enhancing local lipid catabolism. In lean mice, resveratrol scaffolds decreased adipocyte size relative to scaffolds with no drug, a response that correlated with AMP kinase activation. Immunohistochemistry indicated that macrophages and multinucleated giant cells within the scaffold expressed carnitine palmitoyltransferase 1 (CPT1) at higher levels than other cells in the adipose tissue. Furthermore, resveratrol increased CPT1 levels in cultured macrophages. Taken together, we propose that resveratrol scaffolds decrease adipocyte size because resveratrol increases lipid utilization in scaffold‐infiltrating immune cells, possibly through elevating CPT1 levels or activity. In a follow‐up study, mice that received resveratrol scaffolds 28‐day prior to a high‐fat diet exhibited decreased weight gain, adipose tissue expansion, and adipocyte hypertrophy compared to mice with control scaffolds. Notably, this scaffold‐based strategy required a single resveratrol administration compared to the daily regiment generally needed for oral administration. These results indicate that localized delivery of metabolism modulating agents to the adipose tissue may overcome issues with bioavailability and that the role of biomaterials should be further investigated in this therapeutic strategy for metabolic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.