The (8–12 Hz) neocortical alpha rhythm is associated with shifts in attention across sensory systems, and is thought to represent a sensory gating mechanism for the inhibitory control of cortical processing. The present preliminary study sought to explore whether alpha frequency transcranial alternating current stimulation (tACS) could modulate endogenous alpha power in the somatosensory system, and whether the hypothesized modulation would causally impact perception of tactile stimuli at perceptual threshold. We combined electroencephalography (EEG) with simultaneous brief and intermittent tACS applied over primary somatosensory cortex at individuals’ endogenous alpha frequency during a tactile detection task (n = 12 for EEG, n = 20 for behavior). EEG-measured pre-stimulus alpha power was higher on non-perceived than perceived trials, and analogous perceptual correlates emerged in early components of the tactile evoked response. Further, baseline normalized tactile detection performance was significantly lower during alpha than sham tACS, but the effect did not last into the post-tACS time period. Pre- to post-tACS changes in alpha power were linearly dependent upon baseline state, such that alpha power tended to increase when pre-tACS alpha power was low, and decrease when it was high. However, these observations were comparable in both groups, and not associated with evidence of tACS-induced alpha power modulation. Nevertheless, the tactile stimulus evoked response potential (ERP) revealed a potentially lasting impact of alpha tACS on circuit dynamics. The post-tACS ERP was marked by the emergence of a prominent peak ∼70 ms post-stimulus, which was not discernible post-sham, or in either pre-stimulation condition. Computational neural modeling designed to simulate macroscale EEG signals supported the hypothesis that the emergence of this peak could reflect synaptic plasticity mechanisms induced by tACS. The primary lesson learned in this study, which commanded a small sample size, was that while our experimental paradigm provided some evidence of an influence of tACS on behavior and circuit dynamics, it was not sufficient to induce observable causal effects of tACS on EEG-measured alpha oscillations. We discuss limitations and suggest improvements that may help further delineate a causal influence of tACS on cortical dynamics and perception in future studies.
Open Ephys + EEG enables users to acquire high-quality human EEG data comparable to that of commercially available systems, while maintaining the price point and extensibility inherent to open-source systems.
there are currently no rapid, operant pain behaviors in rodents that use a self-report to directly engage higher-order brain circuitry. We have developed a pain detection assay consisting of a lick behavior in response to optogenetic activation of predominantly nociceptive peripheral afferent nerve fibers in head-restrained transgenic mice expressing ChR2 in TRPV1 containing neurons. TRPV1-ChR2-EYFP mice (n = 5) were trained to provide lick reports to the detection of light-evoked nociceptive stimulation to the hind paw. Using simultaneous video recording, we demonstrate that the learned lick behavior may prove more pertinent in investigating brain driven pain processes than the reflex behavior. Within sessions, the response bias of transgenic mice changed with respect to lick behavior but not reflex behavior. Furthermore, response similarity between the lick and reflex behaviors diverged near perceptual threshold. our nociceptive lick-report detection assay will enable a host of investigations into the millisecond, single cell, neural dynamics underlying pain processing in the central nervous system of awake behaving animals. The importance of the brain in nociception has been theorized since Descartes' Treatise of Man 1. Melzack and Wall, whose gate control theory highlights the role of the spinal cord in pain processing, acknowledged the need for the myriad, interconnected brain areas to synthesize the perception of pain 2. Advances in human neural recording technologies have allowed scientists to test theories describing how brain circuits map onto pain 3. Human functional MRI (fMRI) has shown that perceived pain correlates with activation of primary somatosensory cortices, anterior cingulate cortex, and other brain regions implicated in the discriminatory and affective components of pain 4,5. Electroencephalography (EEG) and magnetoencephalography (MEG) have implicated the regulation of specific oscillatory components, for example alpha oscillations in the sensorimotor cortex, in pain perception 6. While techniques such as fMRI, EEG, and MEG paint a macroscopic picture of brain dynamics, these techniques cannot achieve the cellular or temporal resolution necessary for elucidating the neural circuits underlying pain perception. Genetic manipulations 7 and in vivo neural recordings in rodents are foundational in this respect as they afford the granularity required to characterize neural circuit activity and therapeutic outcomes 8-10. Unfortunately, the inability to compare behavioral outputs between animal and human studies presents a significant barrier for clinical translation of experimental results. Pain in humans is primarily measured using verbal self-reports, such as the visual analogue scale 11 , while pain in rodents is inferred from behavioral signals of discomfort, such as reflex behaviors 11,12. Reflex behaviors, like the hind paw withdrawal, are used to characterize evoked pain. Although reflex behaviors have been shown to positively correlate with self-reports of pain in humans 13 , decerebrated ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.