BACKGROUND AND PURPOSE:Endolymphatic hydrops has been recognized as the underlying pathophysiology of Menière disease. We used 3T MR imaging to detect and grade endolymphatic hydrops in patients with Menière disease and to correlate MR imaging findings with the clinical severity.
The brain integrates sensory input from the otolith organs, the semicircular canals, and the somatosensory and visual systems to determine self-orientation relative to gravity. Only the otoliths directly sense the gravito-inertial force vector and therefore provide the major input for perceiving static head-roll relative to gravity, as measured by the subjective visual vertical (SVV). Intraindividual SVV variability increases with head roll, which suggests that the effectiveness of the otolith signal is roll-angle dependent. We asked whether SVV variability reflects the spatial distribution of the otolithic sensors and the otolith-derived acceleration estimate. Subjects were placed in different roll orientations (0-360 degrees, 15 degrees steps) and asked to align an arrow with perceived vertical. Variability was minimal in upright, increased with head-roll peaking around 120-135 degrees, and decreased to intermediate values at 180 degrees. Otolith-dependent variability was modeled by taking into consideration the nonuniform distribution of the otolith afferents and their nonlinear firing rate. The otolith-derived estimate was combined with an internal bias shifting the estimated gravity-vector toward the body-longitudinal. Assuming an efficient otolith estimator at all roll angles, peak variability of the model matched our data; however, modeled variability in upside-down and upright positions was very similar, which is at odds with our findings. By decreasing the effectiveness of the otolith estimator with increasing roll, simulated variability matched our experimental findings better. We suggest that modulations of SVV precision in the roll plane are related to the properties of the otolith sensors and to central computational mechanisms that are not optimally tuned for roll-angles distant from upright.
Self-motion perception after a sudden stop from a sustained rotation in darkness lasts approximately as long as reflexive eye movements. We hypothesized that, after an angular velocity step, self-motion perception and reflexive eye movements are driven by the same vestibular pathways. In 16 healthy subjects (25-71 years of age), perceived rotational velocity (PRV) and the vestibulo-ocular reflex (rVOR) after sudden decelerations (90°/s(2)) from constant-velocity (90°/s) earth-vertical axis rotations were simultaneously measured (PRV reported by hand-lever turning; rVOR recorded by search coils). Subjects were upright (yaw) or 90° left-ear-down (pitch). After both yaw and pitch decelerations, PRV rose rapidly and showed a plateau before decaying. In contrast, slow-phase eye velocity (SPV) decayed immediately after the initial increase. SPV and PRV were fitted with the sum of two exponentials: one time constant accounting for the semicircular canal (SCC) dynamics and one time constant accounting for a central process, known as velocity storage mechanism (VSM). Parameters were constrained by requiring equal SCC time constant and VSM time constant for SPV and PRV. The gains weighting the two exponential functions were free to change. SPV were accurately fitted (variance-accounted-for: 0.85 ± 0.10) and PRV (variance-accounted-for: 0.86 ± 0.07), showing that SPV and PRV curve differences can be explained by a greater relative weight of VSM in PRV compared with SPV (twofold for yaw, threefold for pitch). These results support our hypothesis that self-motion perception after angular velocity steps is be driven by the same central vestibular processes as reflexive eye movements and that no additional mechanisms are required to explain the perceptual dynamics.
OBJECTIVE: Bilateral vestibular loss (BVL) is often diagnosed with great delay and an underlying cause is only identified in 50-80%. We measured horizontal and vertical semicircular canal function using the video-head-impulse test (vHIT) and hypothesized that specific vHIT-patterns may be linked to certain etiologies. METHODS: We retrospectively analyzed 109 BVL-patients linked to aminoglycoside vestibulotoxicity (n=16), Menière's disease (n=10), infectious inner-ear disorders (n=11), sensorineural hearing-loss (n=11), cerebellar-ataxia-neuropathy-vestibular-areflexia-syndrome (CANVAS, n=5), other causes (n=19) as well as those with unknown origin (n=47). Vestibulo-ocular reflex gains and cumulative saccade amplitudes were measured with vHIT, and the functional integrity of all semicircular canals was rated. RESULTS: Overall, anterior canal hypofunction (n=86/218) was identified significantly (p<0.001) less often than horizontal (n=186/218) and posterior (n=194/218) hypofunction. Preserved anterior canal function was associated with aminoglycoside vestibulotoxicity, Menière's disease and BVL of unknown origin, while no such sparing was found for inner-ear infections, CANVAS and sensorineural hearing loss. CONCLUSIONS: Semicircular canal function in BVL shows disease-specific dissociations, potentially related to reduced vulnerability or superior recovery of the anterior canals. SIGNIFICANCE: In patients with suspected BVL we recommend quantifying vHIT gains and saccade amplitudes for all semicircular canals as the pattern of canal hypofunction may help identifying the underlying disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.