Recent findings indicate that elderly patients with acute kidney injury (AKI) have an increased incidence of progression to chronic kidney disease (CKD) due to incomplete recovery from an acute insult. In the current study, a co-morbid model of AKI was developed to better mimic the patient population and to investigate whether age exacerbates the fibrosis and inflammation that develop in the sequelae of progressive kidney disease following acute injury. Young (8–10 weeks) and aged (46–49 weeks) C57BL/6 mice were subjected to 30 min bilateral renal ischemia-reperfusion (I/R) to induce AKI. The aged animals have greater mortality and prolonged elevation of plasma creatinine correlating with less tubular epithelial cell proliferation compared to the young. Six weeks post-reperfusion, interstitial fibrosis is greater in aged kidneys based on picrosirius red staining and immunolocalization of cellular fibronectin, collagen III and collagen IV. Aged kidneys 6 weeks post-reperfusion also express higher levels of p53 and p21 compared to the young, correlating with greater increases in senescence associated (SA) β-galactosidase, a known marker of cellular senescence. A higher influx of F4/80+ macrophages and CD4+ T lymphocytes is measured and is accompanied by increases in mRNA of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α). Importantly, microvascular density is significantly less, correlating with an increase in nitro-tyrosine, a marker of oxidative stress. Collectively, these data demonstrate that prolonged acute injury in the aged animals results in an accelerated progression of kidney disease in a chronic state.
Macrophages are a heterogeneous cell type implicated in injury, repair, and fibrosis after AKI, but the macrophage population associated with each phase is unclear. In this study, we used a renal bilateral ischemiareperfusion injury mouse model to identify unique monocyte/macrophage populations by differential expression of Ly6C in CD11b + cells and to define the function of these cells in the pathophysiology of disease on the basis of microarray gene signatures and reduction strategies. Macrophage populations were isolated from kidney homogenates by fluorescence-activated cell sorting for whole genome microarray analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.