We present the realization of a highly efficient photon pair source based on spontaneous parametric downconversion (SPDC) in a periodically poled lithium niobate (PPLN) ridge waveguide. The source is suitable for long distance quantum communication applications as the photon pairs are located at the centers of the telecommunication O- and C- band at 1312 nm and 1557 nm. The high efficiency is confirmed by a conversion efficiency of 4 × 10-6 - which is to our knowledge among the highest conversion efficiencies reported so far - and a heralding efficiency of 64.1 ± 2.1%. The heralded single-photon properties are confirmed by the measurement of the photon statistics with a Click/No-Click method as well as the heralded g(2)-function. A minimum value for g(2)(0) of 0.001 ± 0.0003 indicating clear antibunching has been observed.
We present results from the first field-trial of a quantum-secured DWDM transmission system, in which quantum key distribution (QKD) is combined with 4 × 10 Gb/s encrypted data and transmitted simultaneously over 26 km of field installed fiber. QKD is used to frequently refresh the key for AES-256 encryption of the 10 Gb/s data traffic. Scalability to over 40 DWDM channels is analyzed.
We introduce a technique for measuring detection efficiency that is traceable to the primary standard, the cryogenic radiometer, through a reference silicon photodiode trap detector. The trap detector, used in conjunction with a switched integrator amplifier, can measure signals down to the 0.1 pW (3 x 10⁵ photons second-1) level with 0.1% uncertainty in a total integration time of 300 seconds. This provides a convenient calibration standard for measurements at these levels across the optical spectrum (UV - near IR). A second technique is also described, based on correlated photons produced via parametric down-conversion. This can be used to directly measure detection efficiency in the photon counting regime, and provides a route for expanding the formulation of the candela in terms of photon flux to enable it to address the needs of emerging quantum optical technologies and applications. The two independent techniques were cross-validated by a comparison carried out at 702.2 nm, which showed agreement to within 0.2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.