Summary
Melanins (eumelanin and pheomelanin) are synthesized in insects for several purposes including cuticle sclerotization and color patterning, clot formation, organogenesis, and innate immunity. Traditional views of insect immunity detail the storage of pro‐phenoloxidases inside specialized blood cells (hemocytes) and their release upon recognition of foreign bodies. Activated phenoloxidases convert monophenols into reactive quinones in a two‐step enzymatic reaction, and until recently, the mechanism of tyrosine hydroxylation remained a mystery. Herein, we present our interpretations of these enzyme–substrate complexes. The resultant melanins are deposited onto the surface of microbes to immobilize, agglutinate, and suffocate them. Phenoloxidase activity and melanin production are not limited to the blood (hemolymph) or cuticle, as recent evidence points to more diverse, sophisticated interactions in the gut and with the resident symbionts. This review offers insight into the somewhat neglected areas of insect melanogenesis research, particularly in innate immunity, its role in beneficial insects such as pollinators, the functional versatility of phenoloxidases, and the limitations of common experimental approaches that may impede progress inadvertently.
It is now well documented that peptides with enhanced or alternative functionality (termed cryptides) can be liberated from larger, and sometimes inactive, proteins. A primary example of this phenomenon is the oxygen-transport protein hemoglobin. Aside from respiration, hemoglobin and hemoglobin-derived peptides have been associated with immune modulation, hematopoiesis, signal transduction and microbicidal activities in metazoans. Likewise, the functional equivalents to hemoglobin in invertebrates, namely hemocyanin and hemerythrin, act as potent immune effectors under certain physiological conditions. The purpose of this review is to evaluate the true extent of oxygen-transport protein dynamics in innate immunity, and to impress upon the reader the multi-functionality of these ancient proteins on the basis of their structures. In this context, erythrocyte–pathogen antibiosis and the immune competences of various erythroid cells are compared across diverse taxa.Electronic supplementary materialThe online version of this article (doi:10.1007/s00018-016-2326-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.