Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by expansion of a polyglutamine tract in ataxin-1. In affected neurons of SCA1 patients and transgenic mice, mutant ataxin-1 accumulates in a single, ubiquitin-positive nuclear inclusion. In this study, we show that these inclusions stain positively for the 20S proteasome and the molecular chaperone HDJ-2/HSDJ. Similarly, HeLa cells transfected with mutant ataxin-1 develop nuclear aggregates which colocalize with the 20S proteasome and endogenous HDJ-2/HSDJ. Overexpression of wild-type HDJ-2/HSDJ in HeLa cells decreases the frequency of ataxin-1 aggregation. These data suggest that protein misfolding is responsible for the nuclear aggregates seen in SCA1, and that overexpression of a DnaJ chaperone promotes the recognition of a misfolded polyglutamine repeat protein, allowing its refolding and/or ubiquitin-dependent degradation.
Spinocerebellar ataxia type 1 (SCA1) is one of several neurodegenerative disorders caused by an expansion of a polyglutamine tract. It is characterized by ataxia, progressive motor deterioration, and loss of cerebellar Purkinje cells. To understand the pathogenesis of SCA1, we examined the subcellular localization of wild-type human ataxin-1 (the protein encoded by the SCA1 gene) and mutant ataxin-1 in the Purkinje cells of transgenic mice. We found that ataxin-1 localizes to the nuclei of cerebellar Purkinje cells. Normal ataxin-1 localizes to several nuclear structures approximately 0.5 microm across, whereas the expanded ataxin-1 localizes to a single approximately 2-microm structure, before the onset of ataxia. Mutant ataxin-1 localizes to a single nuclear structure in affected neurons of SCA1 patients. Similarly, COS-1 cells transfected with wild-type or mutant ataxin-1 show a similar pattern of nuclear localization; with expanded ataxin-1 occurring in larger structures that are fewer in number than those of normal ataxin-1. Colocalization studies show that mutant ataxin-1 causes a specific redistribution of the nuclear matrix-associated domain containing promyelocytic leukaemia protein. Nuclear matrix preparations demonstrate that ataxin-1 associates with the nuclear matrix in Purkinje and COS cells. We therefore propose that a critical aspect of SCA1 pathogenesis involves the disruption of a nuclear matrix-associated domain.
Mutant ataxin-1, the expanded polyglutamine protein causing spinocerebellar ataxia type 1 (SCA1), aggregates in ubiquitin-positive nuclear inclusions (NI) that alter proteasome distribution in affected SCA1 patient neurons. Here, we observed that ataxin-1 is degraded by the ubiquitin-proteasome pathway. While ataxin-1 [2Q] and mutant ataxin-1 [92Q] are polyubiquitinated equally well in vitro, the mutant form is three times more resistant to degradation. Inhibiting proteasomal degradation promotes ataxin-1 aggregation in transfected cells. And in mice, Purkinje cells that express mutant ataxin-1 but not a ubiquitin-protein ligase have significantly fewer NIs. Nonetheless, the Purkinje cell pathology is markedly worse than that of SCA1 mice. Taken together, NIs are not necessary to induce neurodegeneration, but impaired proteasomal degradation of mutant ataxin-1 may contribute to SCA1 pathogenesis.
Within the closing decade of the twentieth century, 14 neurological disorders were shown to result from the expansion of unstable trinucleotide repeats, establishing this once unique mutational mechanism as the basis of an expanding class of diseases. Trinucleotide repeat diseases can be categorized into two subclasses based on the location of the trinucleotide repeats: diseases involving noncoding repeats (untranslated sequences) and diseases involving repeats within coding sequences (exonic). The large body of knowledge accumulating in this fast moving field has provided exciting clues and inspired many unresolved questions about the pathogenesis of diseases caused by expanded trinucleotide repeats. This review summarizes the current understanding of the molecular pathology of each of these diseases, starting with a clinical picture followed by a focused description of the disease genes, the proteins involved, and the studies that have lent insight into their pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.