Copper N-heterocyclic carbenes (NHCs) are an emerging area of focus for catalysis and other applications. Using a straightforward methodology, a new and highly modifiable tetradentate copper(II) NHC complex was generated and characterized using X-ray crystallography, UV–vis and EPR spectroscopy, cyclic voltammetry, and ESI-MS. This copper(II) NHC complex adopted a distorted 4-coordinate coordination mode and demonstrates a unique absorption spectrum for a copper(II) species, but more interestingly, its redox properties indicate that it can readily access all three common copper oxidation states under atmospheric conditions. The tetradentate copper(II) NHC complex was used to catalytically generate new C–N bonds from a series of phenylboronic acids and amines. Once this CEL methodology was refined, moderate to high yields were achieved using catalytic amounts of the copper(II) complex to couple phenylboronic acids to a series of aniline derivatives. Substituted phenylboronic acids and anilines had minimal impact on the catalytic capabilities of this copper complex; however, there is some indication that steric interactions between catalyst and substrates may have an impact on efficient catalysis. The straightforward synthesis of this framework and the utilization of an inexpensive, first-row transition metal center in this system highlight the usefulness of copper(II) NHCs as catalyst for cross-coupling reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.