It is well documented that the bioavailability of hydrophobic organic chemicals (HOCs) can vary substantially among sediments. This makes risk assessments based on total sediment concentrations problematic. The present study investigates the application of thin-film solid-phase extraction to measure bioavailable concentrations of phenanthrene in estuarine sediment by comparing concentrations of phenanthrene in the amphipod Corophium colo and in thin ethylene/vinyl acetate films at different concentrations in three geochemically different sediments. For all sediment types, concentrations of phenanthrene in sediments and thin films followed linear relationships, indicating first-order exchange kinetics. Organism/thin-film concentration ratios did not vary systematically among sediment types but dropped significantly with increasing phenanthrene concentration in the sediments. While at low phenanthrene concentrations in the sediment fugacities of phenanthrene in the amphipods approached the fugacities in the thin films, they were significantly lower than those in the sediments at higher concentrations. While phenanthrene concentrations in the three sediment types were identical, biota sediment accumulation factors and concentrations in amphipods and thin films were consistently lower in sediments enriched with black carbon than in sediments with sedimentary organic matter bearing a more diagenetic organic signature. It is concluded that, for the range of concentrations tested, thin-film solid-phase extraction can be a useful tool in the characterization of differences in bioavailability of HOCs among sediment types.
Solid state 13C-nuclear magnetic resonance (NMR) spectroscopy was used to characterise sedimentary organic matter sampled from three estuaries on the central New South Wales coast (Australia). Cross polarisation (CP) and Bloch decay (BD) experiments were used to determine the chemical composition of the samples. These experiments indicated that, although the natural organic matter is predominately terrestrial in origin, the proportion of carbon existing as aromatic carbon, distinctive of vascular plants, decreases towards the mouth of the estuaries. This suggests that the relative contribution of terrestrial and marine source material largely defines the character of estuarine organic matter. Substantial amounts of charcoal were identified in sedimentary organic matter close to recent bushfire activity. Proton-spin relaxation editing (PSRE) was used to probe the physical structure of the sedimentary organic matter at the sub-micron scale. This technique showed that the organic matter was heterogeneous, providing support for a popular model of sedimentary organic matter structure. However, detailed interpretation of the domain structure of the organic matter was hindered by the presence of multiple components from both terrestrial and marine sources.
The role of composition and structure of sedimentary organic matter (SOM) in the sorption of hydrophobic organic compounds (HOCs) was investigated by spiking 13C-labeled phenanthrene onto six estuarine sediments known to vary in SOM content and character. After equilibration and HF treatment, 13C NMR cross polarization and stable carbon isotope analyses indicated that the amount of desorption-resistant phenanthrene was related to aromatic carbon content. Application of the 13C NMR spectral editing technique proton spin relaxation editing (PSRE) demonstrated that all samples consisted of a rapidly relaxing and a slowly relaxing component, further evidence that SOM can be described as a structurally heterogeneous sorbent. Further, comparison of corresponding control and spiked PSRE subspectra revealed that, for each of the six sediments, desorption-resistant phenanthrene had become associated almost exclusively with the rapidly relaxing component. In only two of the sediments were there even small amounts of phenanthrene discernible in the slowly relaxing component, which is signficant as it was not always true that aromatic carbon was concentrated exclusively in the rapidly relaxing phase. The implication of these findings is that not all aromatic fractions have the same affinity for phenanthrene and that some fractions may indeed have little affinity at all. These results were interpreted as indicative that rapidly relaxing aromatic carbon associated with either sediment-associated charcoal or diagenetic organic matter plays a controlling role in the sorption of HOCs. However, the exact manner in which this rapidly relaxing aromatic phase relates to models presented elsewhere remains unclear.
The bioavailability of four sediment-spiked hydrophobic organic contaminants (HOCs; chrysene, benzo[a]pyrene, chlordane, and Aroclor 1254) was investigated by comparing bioaccumulation by the amphipod Corophium colo with uptake into a thin film of ethylene/vinyl acetate (EVA) copolymer. The EVA thin film is a solid-phase extraction medium previously identified as effective at measuring the bioavailable contaminant fraction in sediment. The present study presents the results of 11 separate treatments in which chemical uptake into EVA closely matched uptake into lipid over 10 d. For all compounds, the concentration in EVA was a good approximation for the concentration in lipid, suggesting that this medium would be an appropriate biomimetic medium for assessing the bioaccumulation of HOCs during risk assessment of contaminated sediment. For chrysene and benzo[a]pyrene, limitations on bioaccumulation and toxicity because of low aqueous solubility were observed. The fugacity of the compounds in lipid (flip) and in the EVA thin film (fEVA) also was determined. The ratio of flip to fEVA was greater than one for all chemicals, indicating that all chemicals biomagnified over the duration of the exposure and demonstrating the potential for EVA thin-film extraction to assess trophic transfer of HOCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.