Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (AtmKD/-) is more oncogenic than loss of ATM (Atm-/-) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate AtmKD/-, but not Atm-proficientor Atm-/- leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.DOI: http://dx.doi.org/10.7554/eLife.14709.001
The newly described hypothalamic peptide, phoenixin, is produced in the hypothalamus and adenohypophysis, where it acts to control reproductive hormone secretion. Both phoenixin and its receptor GPR173 are expressed in the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei, suggesting additional, nonreproductive effects of the peptide to control vasopressin (AVP) or oxytocin (OT) secretion. Hypothalamo-neurohypophysial explants released AVP but not OT in response to phoenixin. Intracerebroventricular administration of phoenixin into conscious, unrestrained male and female rats significantly increased circulating AVP, but not OT, levels in plasma, and it increased immediate early gene expression in the supraoptic nuclei of male rats. Bath application of phoenixin in hypothalamic slice preparations resulted in depolarization of PVN neurons, indicating a direct, neural action of phoenixin in the hypothalamus. Our results suggest that the newly described, hypothalamic peptide phoenixin, in addition to its effects on hypothalamic and pituitary mechanisms controlling reproduction, may contribute to the physiological mechanisms regulating fluid and electrolyte homeostasis.
Recent work identified Gpr160 as a candidate receptor for cocaine- and amphetamine-regulated transcript peptide (CARTp) and described its role in pain modulation. The aims of the present study were to determine if Gpr160 is required for the CARTp's ability to reduce food and water intake and to initially identify the distribution of Gpr160-like immunoreactivity (Gpr160ir) in the rat brain. A passive immunoneutralization approach targeting Gpr160 was used to block the behavioral effects of a pharmacologic dose of CARTp in the fourth cerebroventricle (4V) of rats and to determine the importance of endogenously produced CARTp in the control of ingestive behaviors. Passive immunoneutralization of Gpr160 in the 4V blocked the actions of CARTp to inhibit food and water intakes. Blockade of Gpr160 in the 4V, independent of pharmacologic CART treatment, caused an increase in both overnight food and water intakes. The decrease in food, but not water intake, caused by central injection of CARTp was demonstrated to be interrupted by prior administration of a GLP-1 receptor antagonist. Gpr160ir was observed in several, distinct sites throughout the rat brain, where CARTp staining has been described. Importantly, Gpr160ir was observed to be present in both neuronal and non-neuronal cell types. These data support the hypothesis that Gpr160 is required for the anorexigenic actions of central CARTp injection, and extend these findings to water drinking. Gpr160ir was observed in both neuronal and non-neuronal cell types in regions known to be important in the multiple pharmacologic effects of CARTp, identifying those areas as targets for future compromise of function studies.
There are examples of physiological conditions under which thirst is inappropriately exaggerated, and the mechanisms for these paradoxical ingestive behaviors remain unknown. We are interested in thirst mechanisms across the female life cycle and have identified a novel mechanism through which ingestive behavior may be activated. We discovered a previously unrecognized endogenous hypothalamic peptide, phoenixin (PNX), identified physiologically relevant actions of the peptide in brain and pituitary gland to control reproductive hormone secretion in female rodents, and in the process identified the previously orphaned G protein-coupled receptor Gpr173 to be a potential receptor for the peptide. Labeled PNX binding distribution in brain parallels areas known to be important in ingestive behaviors as well in areas where gonadal steroids feedback to control estrous cyclicity (Stein LM, Tullock CW, Mathews SK, Garcia-Galiano D, Elias CF, Samson WK, Yosten GLC, Am J Physiol Regul Integr Comp Physiol 311: R489–R496, 2016). We have demonstrated upregulation of Gpr173 during puberty, fluctuations across the estrous cycle, and, importantly, upregulation during the last third of gestation. It is during this hypervolemic, hyponatremic state that both vasopressin secretion and thirst are inappropriately elevated in humans. Here, we show that central administration of PNX stimulated water drinking in both males and females under ad libitum conditions, increased water drinking after overnight fluid deprivation, and increased both water and 1.5% NaCl ingestion under fed and hydrated conditions. Importantly, losartan pretreatment blocked the effect of PNX on water drinking, and knockdown of Gpr173 by use of short interfering RNA constructs significantly attenuated water drinking in response to overnight fluid deprivation. These actions, together with the stimulatory action of PNX on vasopressin secretion, suggest that this recently discovered neuropeptide may impact the recruitment of critically important neural circuits through which ingestive behaviors and endocrine mechanisms that maintain fluid and electrolyte homeostasis are regulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.