Sum-frequency generation vibrational spectroscopy (SFG-VS) and kinetic measurements using gas chromatography have been used to study the surface reaction intermediates during the hydrogenation of three alpha,beta-unsaturated aldehydes, acrolein, crotonaldehyde, and prenal, over Pt(111) at Torr pressures (1 Torr of aldehyde, 100 Torr of hydrogen) in the temperature range of 295-415 K. SFG-VS data showed that acrolein has mixed adsorption species of eta(2)-di-sigma(CC)-trans, eta(2)-di-sigma(CC)-cis as well as highly coordinated eta(3) or eta(4) species. Crotonaldehyde adsorbed to Pt(111) as eta(2) surface intermediates. SFG-VS during prenal hydrogenation also suggested the presence of the eta(2) adsorption species and became more highly coordinated as the temperature was raised to 415 K, in agreement with its enhanced C=O hydrogenation. The effect of catalyst surface structure was clarified by carrying out the hydrogenation of crotonaldehyde over both Pt(111) and Pt(100) single crystals while acquiring the SFG-VS spectra in situ. Both the kinetics and SFG-VS showed little structure sensitivity. Pt(100) generated more decarbonylation "cracking" product while Pt(111) had a higher selectivity for the formation of the desired unsaturated alcohol, crotyl alcohol.
Sum frequency generation (SFG) surface vibrational spectroscopy and kinetic measurements using gas chromatography have identified at least two reaction pathways for benzene hydrogenation on the Pt(100) and Pt(111) single-crystal surfaces at Torr pressures. Kinetic studies at low temperatures (310-370 K) show that benzene hydrogenation does not proceed through cyclohexene. A Langmuir-Hinshelwood-type rate law for the low-temperature reaction pathway is identified. The rate-determining step for this pathway is the addition of the first hydrogen atom to adsorbed benzene for both single-crystal surfaces, which is verified by the spectroscopic observation of adsorbed benzene at low temperatures on both the Pt(100) and Pt(111) crystal faces. Low-temperature SFG studies reveal chemisorbed and physisorbed benzene on both surfaces. At higher temperatures (370-440 K), hydrogenation of benzene to pi-allyl c-C(6)H(9) is observed only on the Pt(100) surface. Previous single-crystal studies have identified pi-allyl c-C(6)H(9) as the rate-determining step for cyclohexene hydrogenation to cyclohexane.
Sum frequency generation surface vibrational spectroscopy and kinetic measurements using gas chromatography have been used to systematically study the adsorption and hydrogenation of furan over Pt(111) and Pt(100) single-crystal surfaces and size-controlled 1.0-nm, 3.5-nm and 7.0-nm Pt nanoparticles at Torr pressures (10 Torr of furan, 100 Torr of H(2)) to form dihydrofuran, tetrahydrofuran, and the ring-cracking products butanol and propylene. As determined by SFG, the furan ring lies parallel to all Pt surfaces studied under hydrogenation conditions. Upright THF and the oxametallacycle intermediate are observed over the nanoparticle catalysts under reaction conditions. Butoxy increases in surface concentration over Pt(111) with increasing temperature in agreement with selectivity trends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.