A set of tests on 17 large-scale, nominally identical, beam specimens with variations in loading protocol, loading rate, and restraint to axial elongation are described. Three specimens were also repaired by epoxy injection following an initial damaging earthquake loading. This paper provides a detailed description of the test program, and the corresponding data are made available at Design-Safe (DOI: 10.17603/DS2SQ2K). While the primary goal of the test program was to improve the state of knowledge regarding the post-earthquake residual capacity of reinforced concrete plastic hinges in beams, the data are useful for modeling approaches that consider loading rate, plastic hinge elongation, cyclic degradation, and flexure–shear–axial interaction, in addition to investigating the effectiveness of post-earthquake repair techniques by epoxy injection of cracks.
Modern reinforced concrete buildings are often designed to dissipate energy during strong earthquakes by permitting the controlled formation of plastic hinges. Plastic hinges require assessment of residual capacity in post-earthquake situations. However, few past studies have investigated this topic, and results from experiments focused on undamaged structures are not always transferable to post-earthquake situations. Data from an experimental program, in which both cyclic and earthquake-type loadings were applied to nominally identical reinforced concrete beams, are used to investigate the relationship between residual crack widths and rotation demands. Assessment of the peak deformation demands incurred during a damaging earthquake is critical for post-earthquake assessments, but residual crack widths are shown to be dependent on several factors in addition to the peak rotation demand. Non-dimensional metrics capturing the distribution of cracking are proposed as a more informative alternative. The reduction in stiffness that occurs as a result of earthquake-induced plastic hinging damage was also investigated. A proposed model is shown to give a lower-bound estimate of the residual stiffness following arbitrary earthquake-type loadings.
Summary
Understanding the impact of prior earthquake damage on residual capacity is important for postearthquake damage assessment of buildings; however, interpretation of such impact is challenging when based on tests using traditional reversed‐cyclic loading protocols. A new loading protocol, consisting of a dynamic earthquake displacement history followed by quasi‐static reversed‐cyclic loading to failure, is presented as an alternative to traditional simulated seismic loading protocols. Data are analyzed from a set of 12 nominally identical ductile reinforced concrete beams that were tested by using variations of this protocol and traditional reversed‐cyclic and monotonic protocols. Differences in the cycle content of the earthquake displacement histories applied to the test specimens allowed for the effects of load history variation below 2.2% drift to be isolated. It is found that such variation had no effect on the beam deformation capacities. The effects of dynamic loading rates are also analyzed and compared against control quasi‐static specimens. Relative strength increases due to dynamic loading are found to be more significant at yield than at ultimate. Dynamic loading rates led to modest reductions in the beam deformation capacities, but the presence of causality between these variables remains uncertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.