We present an ab initio molecular dynamics simulation of the aqueous liquid-vapor interface. Having successfully stabilized a region of bulk water in the center of a water slab, we were able to reproduce and further quantify the experimentally observed abundance of surface "acceptor-only"(19%) and "single-donor"(66%) moieties as well as substantial surface relaxation approaching the liquid-vapor interface. Examination of the orientational dynamics points to a faster relaxation in the interfacial region. Furthermore, the average value of the dipole decreases and the average value of the highest occupied molecular orbital for each water molecule increases approaching the liquid-vapor interface. Our results support the idea that the surface contains, on average, far more reactive states than the bulk.
We present herein a comprehensive density functional theory study toward assessing the accuracy of two popular gradient-corrected exchange correlation functionals on the structure and density of liquid water at near ambient conditions in the isobaric-isothermal ensemble. Our results indicate that both PBE and BLYP functionals under predict the density and over structure the liquid. Adding the dispersion correction due to Grimme (1, 2) improves the predicted densities for both BLYP and PBE in a significant manner. Moreover, the addition of the dispersion correction for BLYP yields an oxygen-oxygen radial distribution function in excellent agreement with experiment. Thus, we conclude that one can obtain a very satisfactory model for water using BLYP and a correction for dispersion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.