Summary SARS-CoV-2 Spike protein is critical for virus infection via engagement of ACE2 1 , and is a major antibody target. Here we report chronic SARS-CoV-2 with reduced sensitivity to neutralising antibodies in an immune suppressed individual treated with convalescent plasma, generating whole genome ultradeep sequences over 23 time points spanning 101 days. Little change was observed in the overall viral population structure following two courses of remdesivir over the first 57 days. However, following convalescent plasma therapy we observed large, dynamic virus population shifts, with the emergence of a dominant viral strain bearing D796H in S2 and ΔH69/ΔV70 in the S1 N-terminal domain NTD of the Spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype diminished in frequency, before returning during a final, unsuccessful course of convalescent plasma. In vitro , the Spike escape double mutant bearing ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, whilst maintaining infectivity similar to wild type. D796H appeared to be the main contributor to decreased susceptibility but incurred an infectivity defect. The ΔH69/ΔV70 single mutant had two-fold higher infectivity compared to wild type, possibly compensating for the reduced infectivity of D796H. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy associated with emergence of viral variants with evidence of reduced susceptibility to neutralising antibodies.
SummaryThe extensive genetic heterogeneity of cancers can greatly affect therapy success due to the existence of subclonal mutations conferring resistance. However, the characterization of subclones in mixed-cell populations is computationally challenging due to the short length of sequence reads that are generated by current sequencing technologies. Here, we report cloneHD, a probabilistic algorithm for the performance of subclone reconstruction from data generated by high-throughput DNA sequencing: read depth, B-allele counts at germline heterozygous loci, and somatic mutation counts. The algorithm can exploit the added information present in correlated longitudinal or multiregion samples and takes into account correlations along genomes caused by events such as copy-number changes. We apply cloneHD to two case studies: a breast cancer sample and time-resolved samples of chronic lymphocytic leukemia, where we demonstrate that monitoring the response of a patient to therapy regimens is feasible. Our work provides new opportunities for tracking cancer development.
Single-cell RNA-sequencing is revolutionising our understanding of seemingly homogeneous cell populations but has not yet been widely applied to single-celled organisms. Transcriptional variation in unicellular malaria parasites from the Plasmodium genus is associated with critical phenotypes including red blood cell invasion and immune evasion, yet transcriptional variation at an individual parasite level has not been examined in depth. Here, we describe the adaptation of a single-cell RNA-sequencing (scRNA-seq) protocol to deconvolute transcriptional variation for more than 500 individual parasites of both rodent and human malaria comprising asexual and sexual life-cycle stages. We uncover previously hidden discrete transcriptional signatures during the pathogenic part of the life cycle, suggesting that expression over development is not as continuous as commonly thought. In transmission stages, we find novel, sex-specific roles for differential expression of contingency gene families that are usually associated with immune evasion and pathogenesis.
A large fraction of human complex trait heritability is due to a high number of variants with small marginal effects and their interactions with genotype and environment. Such alleles are more easily studied in model organisms, where environment, genetic makeup, and allele frequencies can be controlled. Here, we examine the effect of natural genetic variation on heritable traits in a very large pool of baker's yeast from a multiparent 12th generation intercross. We selected four representative founder strains to produce the Saccharomyces Genome Resequencing Project (SGRP)-4X mapping population and sequenced 192 segregants to generate an accurate genetic map. Using these individuals, we mapped 25 loci linked to growth traits under heat stress, arsenite, and paraquat, the majority of which were best explained by a diverging phenotype caused by a single allele in one condition. By sequencing pooled DNA from millions of segregants grown under heat stress, we further identified 34 and 39 regions selected in haploid and diploid pools, respectively, with most of the selection against a single allele. While the most parsimonious model for the majority of loci mapped using either approach was the effect of an allele private to one founder, we could validate examples of pleiotropic effects and complex allelic series at a locus. SGRP-4X is a deeply characterized resource that provides a framework for powerful and high-resolution genetic analysis of yeast phenotypes and serves as a test bed for testing avenues to attack human complex traits.T HE strong tendency for progeny to closely resemble their parents has turned out to be difficult to understand in detail. Nearly all traits, including lifetime risk for many common diseases, have a complex genetic basis that is determined by multiple quantitative trait loci (QTL) (Donnelly 2008;Manolio et al. 2009). The first step toward accurate models of trait variability, and a prerequisite for predicting and modulating them, is characterization of the underlying genetic factors in the context of rest of the genome and their external environment. Research in model systems has led the way in this effort and produced powerful experimental and computational approaches for genetic mapping (Nordborg and Weigel 2008;Flint and Mackay 2009;Mackay et al. 2009).A traditional, well-controlled approach for finding the QTL underlying natural phenotypic variation is to analyze a large number of progenies from two-parent crosses (Brem et al. 2002;Simon et al. 2008). Studies using this design have improved our understanding of complex traits and provided concrete evidence of natural segregating variants ), but have been limited in their scope with regard to the extent of genetic variation between the two parents. Mapping populations of popular model organisms ranging from fruit flies (King et al. 2012) (Churchill et al. 2004;Durrant et al. 2011) to plants (Kover et al. 2009;Gan et al. 2011;Huang et al. 2011) has recently expanded the genetic and phenotypic diversity available to study by ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.