Müller glia are the resident radial glia in the vertebrate retina. The response of mammalian Müller glia to retinal damage often results in a glial scar and no functional replacement of lost neurons. Adult zebrafish Müller glia, in contrast, are considered tissue-specific stem cells that can self-renew and generate neurogenic progenitors to regenerate all retinal neurons after damage. Here, we demonstrate that regulation of TGFβ signaling by the corepressors Tgif1 and Six3b is critical for the proliferative response to photoreceptor destruction in the adult zebrafish retina. When function of these corepressors is disrupted, Müller glia and their progeny proliferate less, leading to a significant reduction in photoreceptor regeneration. Tgif1 expression and regulation of TGFβ signaling are implicated in the function of several types of stem cells, but this is the first demonstration that this regulatory network is necessary for regeneration of neurons.
Eukaryotic genomes contain significant amounts of transposons and repetitive DNA elements, which, if transcribed, can be detrimental to the organism. Expression of these elements is suppressed by establishment of repressive chromatin modifications. In Arabidopsis thaliana, they are silenced by the siRNA–mediated transcriptional gene silencing pathway where long non-coding RNAs (lncRNAs) produced by RNA Polymerase V (Pol V) guide ARGONAUTE4 (AGO4) to chromatin and attract enzymes that establish repressive chromatin modifications. It is unknown how chromatin modifying enzymes are recruited to chromatin. We show through chromatin immunoprecipitation (ChIP) that SPT5L/KTF1, a silencing factor and a homolog of SPT5 elongation factors, binds chromatin at loci subject to transcriptional silencing. Chromatin binding of SPT5L/KTF1 occurs downstream of RNA Polymerase V, but independently from the presence of 24-nt siRNA. We also show that SPT5L/KTF1 and AGO4 are recruited to chromatin in parallel and independently of each other. As shown using methylation-sensitive restriction enzymes, binding of both AGO4 and SPT5L/KTF1 is required for DNA methylation and repressive histone modifications of several loci. We propose that the coordinate binding of SPT5L and AGO4 creates a platform for direct or indirect recruitment of chromatin modifying enzymes.
PurposeZebrafish neurons regenerate from Müller glia following retinal lesions. Genes and signaling pathways important for retinal regeneration in zebrafish have been described, but our understanding of how Müller glial stem cell properties are regulated is incomplete. Mammalian Müller glia possess a latent neurogenic capacity that might be enhanced in regenerative therapies to treat degenerative retinal diseases.MethodsTo identify transcriptional changes associated with stem cell properties in zebrafish Müller glia, we performed a comparative transcriptome analysis from isolated cells at 8 and 16 hours following an acute photic lesion, prior to the asymmetric division that produces retinal progenitors.ResultsWe report a rapid, dynamic response of zebrafish Müller glia, characterized by activation of pathways related to stress, nuclear factor–κB (NF-κB) signaling, cytokine signaling, immunity, prostaglandin metabolism, circadian rhythm, and pluripotency, and an initial repression of Wnt signaling. When we compared publicly available transcriptomes of isolated mouse Müller glia from two retinal degeneration models, we found that mouse Müller glia showed evidence of oxidative stress, variable responses associated with immune regulation, and repression of pathways associated with pluripotency, development, and proliferation.ConclusionsCategories of biological processes/pathways activated following photoreceptor loss in regeneration-competent zebrafish Müller glia, which distinguished them from mouse Müller glia in retinal degeneration models, included cytokine signaling (notably NF-κB), prostaglandin E2 synthesis, expression of core clock genes, and pathways/metabolic states associated with pluripotency. These regulatory mechanisms are relatively unexplored as potential mediators of stem cell properties likely to be important in Müller glial cells for successful retinal regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.