clinicaltrials.gov Identifier: NCT02139930.
Background Tobacco exposure is often quantified by serum or saliva concentrations of the primary nicotine metabolite, cotinine. However, average cotinine concentrations are higher in African American (AA) compared to Whites with similar smoking levels. Cotinine is metabolized by UGT2B10 and CYP2A6, and low UGT2B10 activity is common in AA, due to the prevalence of a UGT2B10 splice variant. Methods UGT2B10-activity was phenotyped in 1446 smokers (34% AA) by measuring the percentage of cotinine excreted as a glucuronide. Urinary total nicotine equivalents (TNE), the sum of nicotine and 6 metabolites were determined to quantify smoking dose, and cotinine and 3′-hydroxycotinine were quantified in saliva (study 1) or serum (study 2). Results Ninety seven smokers (78% AA) were null for UGT2B10 activity, and the saliva and serum cotinine levels, after adjustment for TNE and CPD were 68% and 48% higher in these smokers compared to non-null smokers (p<0.001). After adjustment for TNE and CPD, salivary cotinine was 35% higher, and serum cotinine 24% higher in AA versus White smokers, but with additional adjustment for UGT2B10 activity, there were no significant differences in saliva and serum cotinine concentrations between these two groups. Conclusion UGT2B10 activity significantly influences plasma cotinine levels and higher cotinine concentrations in AA versus White smokers (after adjustment for smoking dose) result from lower levels of UGT2B10-catalyzed cotinine glucuronidation by AA. Impact UGT2B10 activity or genotype should be considered when using cotinine as a tobacco exposure biomarker, particularly in populations such as AA with high frequencies of UGT2B10 non-functional variants.
Blastocyst complementation combined with gene editing is an emerging approach in the field of regenerative medicine that could potentially solve the worldwide problem of organ shortages for transplantation. In theory, blastocyst complementation can generate fully functional human organs or tissues, grown within genetically engineered livestock animals. Targeted deletion of a specific gene(s) using gene editing to cause deficiencies in organ development can open a niche for human stem cells to occupy, thus generating human tissues. Within this review, we will focus on the pancreas, liver, heart, kidney, lung, and skeletal muscle, as well as cells of the immune and nervous systems. Within each of these organ systems, we identify and discuss (i) the common causes of organ failure; (ii) the current state of regenerative therapies; and (iii) the candidate genes to knockout and enable specific exogenous organ development via the use of blastocyst complementation. We also highlight some of the current barriers limiting the success of blastocyst complementation.
Background: Cotinine is the most widely used biomarker of tobacco exposure. At similar smoking levels, African Americans have higher serum cotinine than Whites. UGT2B10-catalyzed cotinine glucuronidation impacts these levels, and African Americans often have low UGT2B10 activity due to a high prevalence of a UGT2B10 splice variant (rs2942857).Methods: Two UGT2B10 SNPs (rs6175900 and rs2942857) were genotyped in 289 African Americans and 627 White smokers. Each smoker was assigned a genetic score of 0, 1, or 2 based on the number of variant alleles. Total nicotine equivalents (TNE), the sum of nicotine and six metabolites, and serum cotinine and 3 0 -hydroxycotinine were quantified. The contribution of UGT2B10 genetic score to cotinine concentration was determined.Results: Serum cotinine was significantly higher in smokers with UGT2B10 genetic scores of 2 versus 0 (327 ng/mL vs. 221 ng/mL; P < 0.001); TNEs were not different. In a linear regression model adjusted for age, gender, cigarettes per day, TNE, race, and CYP2A6 activity, geometric mean cotinine increased 43% between genetic score 2 versus 0 (P < 0.001). A 0.1 increase in the CYP2A6 activity ratio, 3 0 -hydroxycotinine/cotinine, resulted in a 6% decrease in cotinine. After adjustment for UGT2B10 genotype and the other covariants, there was no significant difference in serum cotinine by race.Conclusions: UGT2B10 genotype is a major contributor to cotinine levels and explains the majority of high serum cotinine in African American smokers.Impact: Cotinine levels in smokers may greatly overestimate tobacco exposure and potentially misinform our understanding of ethnic/racial difference in tobacco-related disease if UGT2B10 genotype is not taken into account.
Zika virus (ZIKV) exhibits a tropism for brain tumor cells and has been used as an oncolytic virus to target brain tumors in mice with modest effects on extending median survival. Recent studies have highlighted the potential for combining virotherapy and immunotherapy to target cancer. We postulated that ZIKV could be used as an adjuvant to enhance the long-term survival of mice with malignant glioblastoma and generate memory T-cells capable of providing long-term immunity against cancer remission. To test this hypothesis mice bearing malignant intracranial GL261 tumors were subcutaneously vaccinated with irradiated GL261 cells previously infected with the ZIKV. Mice also received intracranial injections of live ZIKV, irradiation attenuated ZIKV, or irradiated GL261 cells previously infected with ZIKV. Long-term survivors were rechallenged with a second intracranial tumor to examine their immune response and look for the establishment of protective memory T-cells. Mice with subcutaneous vaccination plus intracranial irradiation attenuated ZIKV or intracranial irradiated GL261 cells previously infected with ZIKV exhibited the greatest extensions to overall survival. Flow cytometry analysis of immune cells within the brains of long-term
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.