Rapidly controlling and switching adhesion is necessary for applications in robotic gripping and locomotion, pick and place operations, and transfer printing. However, switchable adhesives often display a binary response (on or off) with a narrow adhesion range, lack post‐fabrication adhesion tunability, or switch slowly due to diffusion‐controlled processes. Here, pneumatically controlled shape and rigidity tuning is coupled to rapidly switch adhesion (≈0.1 s) across a wide range of programmable adhesion forces with measured switching ratios as high as 1300x. The switchable adhesion system introduces an active polydimethylsiloxane membrane supported on a compliant, foam foundation with pressure‐tunable rigidity where positive and negative pneumatic pressure synergistically control contact stiffness and geometry to activate and release adhesion. Energy‐based modeling and finite element computation demonstrate that high adhesion is achieved through a pressure‐dependent, nonlinear stiffness of the foundation, while an inflated shape at positive pressures enables easy release. This approach enables adhesion‐based gripping and material assembly, which is utilized to pick‐and‐release common objects, rough and porous materials, and arrays of elements with a greater than 14 000x range in mass. The robust assembly of diverse components (rigid, soft, flexible) is then demonstrated to create a soft and stretchable electronic device.
Within the field of robotics, stiffness tuning technologies have potential for a variety of applications-perhaps most notably for robotic grasping. Many stiffness tuning grippers have been developed that can grasp fragile or irregularly shaped objects without causing damage and while still accommodating large loads. In addition to limiting gripper deformation when lifting an object, increasing gripper stiffness after contact formation improves load sharing at the interface and enhances adhesion. In this study, we present a novel stiffness and adhesion tuning gripper, enabled by the thermally induced phase change of a thermoplastic composite material embedded within a silicone contact pad. The gripper operates by bringing the pad into contact with an object while in its heated, soft state, and then allowing the pad to cool and stiffen to form a strong adhesive bond before lifting the object. Pull-off tests conducted using the gripper show that transitioning from a soft to stiff state during grasping enables up to 6 • increase in adhesion strength. Additionally, a finite element model is developed to simulate the behavior of the gripper. Finally, pick-and-place demonstrations are performed, which highlight the gripper's ability to delicately grasp objects of various shapes, sizes, and weights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.