Deep learning has revolutionized predictive modeling in topics such as computer vision and natural language processing but is not commonly applied to psychological data. In an effort to bring the benefits of deep learning to psychologists, we provide an overview of deep learning for researchers who have a working knowledge of linear regression. We first discuss several benefits of the deep learning approach to predictive modeling. We then present three basic deep learning models that generalize linear regression: The feedforward neural network (FNN), the recurrent neural network (RNN), and the convolutional neural network (CNN). We include concrete toy examples with R code to demonstrate how each model may be applied to answer prediction-focused research questions using common data types collected by psychologists.
Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected from smart-home devices. Increasingly, higher education systems have been using Learning Management System (LMS) digital data to capture and understand students’ learning and well-being. Researchers in the social sciences are increasingly interested in the potential of using digital log data to predict outcomes and design interventions. Using LMS data for predicting the likelihood of students’ success in for-credit college courses provides a useful example of how social scientists can use these techniques on a variety of data types. Here, we provide a primer on how LMS data can be feature-mapped and analyzed to accomplish these goals. We begin with a literature review summarizing current approaches to analyzing LMS data, then discuss ethical issues of privacy when using demographic data and equitable model building. In the second part of the paper, we provide an overview of popular machine learning algorithms and review analytic considerations such as feature generation, assessment of model performance, and sampling techniques. Finally, we conclude with an empirical example demonstrating the ability of LMS data to predict student success, summarizing important features and assessing model performance across different model specifications.
We investigate novel parameter estimation and goodness-of-fit (GOF) assessment methods for large-scale confirmatory item factor analysis (IFA) with many respondents, items, and latent factors. For parameter estimation, we extend Urban and Bauer's (2021) deep learning algorithm for exploratory IFA to the confirmatory setting by showing how to handle user-defined constraints on loadings and factor correlations. For GOF assessment, we explore new simulation-based tests and indices. In particular, we consider extensions of the classifier two-sample test (C2ST), a method that tests whether a machine learning classifier can distinguish between observed data and synthetic data sampled from a fitted IFA model. The C2ST provides a flexible framework that integrates overall model fit, piece-wise fit, and person fit. Proposed extensions include a C2ST-based test of approximate fit in which the user specifies what percentage of observed data can be distinguished from synthetic data as well as a C2ST-based relative fit index that is similar in spirit to the relative fit indices used in structural equation modeling. Via simulation studies, we first show that the confirmatory extension of Urban and Bauer's (2021) algorithm produces more accurate parameter estimates as the sample size increases and obtains comparable estimates to a state-of-the-art confirmatory IFA estimation procedure in less time. We next show that the C2ST-based test of approximate fit controls the empirical type I error rate and detects when the number of latent factors is misspecified. Finally, we empirically investigate how the sampling distribution of the C2ST-based relative fit index depends on the sample size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.