Abstract:For decades research and development has been committed to improving the Figure of Merit (ZT) of Bismuth Telluride (Bi2Te3) Thermoelectric Generators (TEG) and has reached its limit at ≈1. This Meta-study aims to determine if further improvements can be made when the size of TEGs decrease. To quantify the change from macro to nano scale the change in ZT, thermal and electrical conductance, Seebeck coefficient and power factor as the size of the thermoelements decrease has been investigated as well as how Wiedemann-Franz (WF) law holds on the nanoscale. This meta-study was conducted by evaluating and comparing developments in TEGs for the past three decades. Based on theory it was expected that increases in ZT would occur as the thermoelement dimensions are reduced due to increased scattering of electrons and phonons as well as the increased density of electronic states. Increases to ZT due to these effects was not observed in experimental data due to difficulties in nanoscale production. This meta-study observed some indicators that the theory is correct in reduced thermal conduction from increased phonon and electron scattering and that phonon scattering was greater than electron scattering. Furthermore, a weak indication that WF law is not applicable on the nanoscale due to the scattering suggesting a decoupling of electrical and thermal conduction which is not achievable in macro scale TEGs
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.