Neurofibrillary tangles (NFTs) are the most common intraneuronal inclusion in the brains of patients with neurodegenerative diseases and have been implicated in mediating neuronal death and cognitive deficits. Here, we found that mice expressing a repressible human tau variant developed progressive age-related NFTs, neuronal loss, and behavioral impairments. After the suppression of transgenic tau, memory function recovered, and neuron numbers stabilized, but to our surprise, NFTs continued to accumulate. Thus, NFTs are not sufficient to cause cognitive decline or neuronal death in this model of tauopathy.
Much evidence indicates that abnormal processing and extracellular deposition of amyloid-beta peptide (A beta), a proteolytic derivative of the beta-amyloid precursor protein (betaAPP), is central to the pathogenesis of Alzheimer's disease (reviewed in ref. 1). In the PDAPP transgenic mouse model of Alzheimer's disease, immunization with A beta causes a marked reduction in burden of the brain amyloid. Evidence that A beta immunization also reduces cognitive dysfunction in murine models of Alzheimer's disease would support the hypothesis that abnormal A beta processing is essential to the pathogenesis of Alzheimer's disease, and would encourage the development of other strategies directed at the 'amyloid cascade'. Here we show that A beta immunization reduces both deposition of cerebral fibrillar A beta and cognitive dysfunction in the TgCRND8 murine model of Alzheimer's disease without, however, altering total levels of A beta in the brain. This implies that either a approximately 50% reduction in dense-cored A beta plaques is sufficient to affect cognition, or that vaccination may modulate the activity/abundance of a small subpopulation of especially toxic A beta species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.