Silicon nanocrystals exhibit size-dependent optical and electronic properties that may be exploited for applications ranging from sensors to photovoltaics. In addition, they can be utilized in biological and environmental systems thanks to the nontoxicity of silicon. Synthesis of silicon nanocrystals has been accomplished using a variety of methods. However, creating near monodisperse systems of high purity has been a challenge. The high temperature processing of hydrogen silsesquioxane method of particle synthesis reproducibly provides pure, near monodisperse particles in scalable quantities. These particles can then be liberated using HF etching and functionalized using a variety of methods. This paper outlines our lab procedures for creating silicon nanocrystals, the various functionalization methods and the most commonly used characterization techniques.
Ratiometric photoluminescent detection of the toxicologically potent organophosphate ester nerve agents paraoxon (PX) and parathion (PT) using the complementary optical and chemical properties of the long Stokes shift green fluorescent protein variant, mAmetrine1.2 (mAm), and redemitting silicon-based quantum dots (SiQDs) is reported. PX and PT selectively quench SiQD photoluminescence (PL) through a dynamic quenching mechanism, thereby, facilitating the development of a ratiometric sensor platform that shows micromolar limits of detection for PX and PT and that is unaffected by the presence of common inorganic and organic interferents. As a part of the present study, we also demonstrate that the paper-based sensors derived from mAm and SiQDs detect PX and PT at concentrations as low as 5 μM using a readily available commercial color analysis smartphone "app". The ratiometric sensor reported herein can potentially be used for the convenient and rapid on-site detection and quantification of PX and PT in real-world samples.
This study reports the preparation of functional bioinorganic hybrid materials exhibiting catalytic activity and photoluminescent properties arising from the combination of enzymes and freestanding silicon-based nanoparticles. The hybrid materials reported herein have potential applications in biological sensing/imaging and theranostics, as they combine long-lived silicon-based nanoparticle photoluminescence with substrate-specific enzymatic activity. Thermal hydrosilylation of undecenoic acid and alkene-terminated poly(ethylene oxide) with hydride-terminated silicon nanocrystals afforded nanoparticles functionalized with a mixed surface made up of carboxylic acid and poly(ethylene oxide) moieties. These silicon-based nanoparticles were subsequently conjugated with prototypical enzymes through the carbodiimide-mediated amide coupling reaction in order to form bioinorganic hybrids that display solubility and photostability in phosphate buffer, photoluminescence (λ = 630 nm), and enzymatic activity. They were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), dynamic light scattering analysis (DLS), photoluminescence spectroscopy, and pertinent enzyme activity assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.