Locating circuit neurons and recording from them with single-cell resolution is a prerequisite for studying neural circuits. Determining neuron location can be challenging even in small nervous systems because neurons are densely packed, found in different layers, and are often covered by ganglion and nerve sheaths that impede access for recording electrodes and neuronal markers. We revisited the voltage-sensitive dye RH795 for its ability to stain and record neurons through the ganglion sheath. Bath-application of RH795 stained neuronal membranes in cricket, earthworm and crab ganglia without removing the ganglion sheath, revealing neuron cell body locations in different ganglion layers. Using the pyloric and gastric mill central pattern generating neurons in the stomatogastric ganglion (STG) of the crab, Cancer borealis, we found that RH795 permeated the ganglion without major residue in the sheath and brightly stained somatic, axonal and dendritic membranes. Visibility improved significantly in comparison to unstained ganglia, allowing the identification of somata location and number of most STG neurons. RH795 also stained axons and varicosities in non-desheathed nerves, and it revealed the location of sensory cell bodies in peripheral nerves. Importantly, the spike activity of the sensory neuron AGR, which influences the STG motor patterns, remained unaffected by RH795, while desheathing caused significant changes in AGR activity. With respect to recording neural activity, RH795 allowed us to optically record membrane potential changes of sub-sheath neuronal membranes without impairing sensory activity. The signal-to-noise ratio was comparable with that previously observed in desheathed preparations and sufficiently high to identify neurons in single-sweep recordings and synaptic events after spike-triggered averaging. In conclusion, RH795 enabled staining and optical recording of neurons through the ganglion sheath and is therefore both a good anatomical marker for living neural tissue and a promising tool for studying neural activity of an entire network with single-cell resolution.
Cross-section through adult mouse retina showing morphology of M€ uller glial cells (green). Labeling with a membrane-targeted green fluorescent protein reveals the fine structure of M€ uller cell arbors within the inner plexiform layer (IPL) neuropil. Sublaminae S2 and S4 of the IPL are labeled with anti-choline acetyltransferase (purple). M€ uller arbor density is lowest in S2 and S4, but high in other IPL substrata.
A ubiquitous feature of the nervous system is the processing of simultaneously arriving sensory inputs from different modalities. Yet, because of the difficulties of monitoring large populations of neurons with the single resolution required to determine their sensory responses, the cellular mechanisms of how populations of neurons encode different sensory modalities often remain enigmatic. We studied multimodal information encoding in a small sensorimotor system of the crustacean stomatogastric nervous system that drives rhythmic motor activity for the processing of food. This system is experimentally advantageous, as it produces a fictive behavioral output in vitro, and distinct sensory modalities can be selectively activated. It has the additional advantage that all sensory information is routed through a hub ganglion, the commissural ganglion, a structure with fewer than 220 neurons. Using optical imaging of a population of commissural neurons to track each individual neuron's response across sensory modalities, we provide evidence that multimodal information is encoded via a combinatorial code of recruited neurons. By selectively stimulating chemosensory and mechanosensory inputs that are functionally important for processing of food, we find that these two modalities were processed in a distributed network comprising the majority of commissural neurons imaged. In a total of 12 commissural ganglia, we show that 98% of all imaged neurons were involved in sensory processing, with the two modalities being processed by a highly overlapping set of neurons. Of these, 80% were multimodal, 18% were unimodal, and only 2% of the neurons did not respond to either modality. Differences between modalities were represented by the identities of the neurons participating in each sensory condition and by differences in response sign (excitation versus inhibition), with 46% changing their responses in the other modality. Consistent with the hypothesis that the commissural network encodes different sensory conditions in the combination of activated neurons, a new combination of excitation and inhibition was found when both pathways were activated simultaneously. The responses to this bimodal condition were distinct from either unimodal condition, and for 30% of the neurons, they were not predictive from the individual unimodal responses. Thus, in a sensorimotor network, different sensory modalities are encoded using a combinatorial code of neurons that are activated or inhibited. This provides motor networks with the ability to differentially respond to categorically different sensory conditions and may serve as a model to understand higher-level processing of multimodal information.
The goal of the following research was to investigate the contributions of neural networks in selecting distinct variants of rhythmic motor activity. We used the premotor commissural ganglion (CoG) in the stomatogastric nervous system of the Jonah crab to understand how this network effectively controls the rhythms produced in downstream motor circuits. Prior research determined that individual CoG neurons are necessary to mediate sensory-induced variation in the effected motor patterns. However, single premotor neuron inputs to the STG are not sufficient to recreate the patterns induced by the selective activation of sensory pathways. Thus, it was hypothesized that the CoGmediated effects on these sensorimotor transformations may be explained at the level of CoG population activity.We embraced the exploratory nature of this study by approaching it in three phases. First, we established voltage-sensitive dye imaging in the stomatogastric nervous system, as a technique that reports the simultaneous activity of many neurons with single-neuron resolution. In short, this form of imaging was effective at reporting both slow and fast changes in membrane potential, and provided an effective means of studying neuronal population activities. In addition, these dyes stain fine neural structures through nerve sheaths, connective tissue that must often be surgically removed to access the neurons contained within the sheaths. Then, we characterized the distribution of somata in the CoG, and found that soma location was not fixed in its location from animal to animal, but that clustering of CoG somata did occur near their different nerve pathway origins. Finally, we used the voltage-sensitive dye-imaging technique to investigate the CoG population under different sensory conditions, and found that two different sensory modalities, one chemosensory and one mechanosensory pathway, differentially affected the balance of excited and inhibited (network activation) neurons found in the CoGs. Moreover, differences in CoG neuron participation between modalities was not extremely robust. However, the population activity differed enough so that both CoG participation and activation were drivers of the observed changes in the downstream pyloric motor network, providing support for a premotor combinatorial code for motor pattern selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.