Here we apply microcrystal electron diffraction (MicroED) to the structural determination of transition metal complexes. We find that the simultaneous use of 300 keV electrons, very low electron doses, and an ultra-sensitive camera allows for the collection of data without cryogenic cooling of the stage. This technique reveals the first crystal structures of the classic zirconocene hydride, colloquially known as “Schwartz’s reagent”, a novel Pd(II) complex not amenable to solution-state NMR or X-ray crystallography, and five other paramagnetic or diamagnetic transition metal complexes.
Here we apply microcrystal electron diffraction (MicroED) to the structural determination of transition metal complexes. We find that the simultaneous use of 300 keV electrons, very low electron doses, and an ultra-sensitive camera allows for the collection of data without cryogenic cooling of the stage. This technique reveals the first crystal structures of the classic zirconocene hydride, colloquially known as “Schwartz’s reagent”, a novel Pd(II) complex not amenable to solution-state NMR or X-ray crystallography, and five other paramagnetic or diamagnetic transition metal complexes.
Here we apply microcrystal electron diffraction (MicroED) to the structural determination of transition metal complexes. We find that the simultaneous use of 300 keV electrons, very low electron doses, and an ultra-sensitive camera allows for the collection of data without cryogenic cooling of the stage. This technique reveals the first crystal structures of the classic zirconocene hydride, colloquially known as “Schwartz’s reagent”, a novel Pd(II) complex not amenable to solution-state NMR or X-ray crystallography, and five other paramagnetic or diamagnetic transition metal complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.