The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information 14. ABSTRACT The mechanics of uncemented soft sediments during bubble growth are not widely understood and no rheological model has found wide acceptance. We offer definitive evidence on the mode of bubble formation in the form of X-ray computed tomographic images and comparison with theory. Natural and injected bubbles in muddy cohesive sediments are shown to be highly eccentric oblate spheroids (disks) that grow either by fracturing the sediment or by reopening preexisting fractures. In contrast, bubbles in soft sandy sediment tend to be spherical, suggesting that sand acts fluidly or plastically in response to growth stresses. We also present bubble-rise results from gelatin, a mechanically similar but transparent medium, that suggest that initial rise is also accomplished ABSTRACT idization, e.g., gravity flows, during some natThe mechanics of uncemented soft sediments during bubble growth are not widely ural disturbances have suggested that such understood and no rheological model has found wide acceptance. We offer definitive ev-sediments can act fluidly or plastically in reidence on the mode of bubble formation in the form of X-ray computed tomographic sponse to stress. Past mechanical models of images and comparison with theory. Natural and injected bubbles in muddy cohesive bubbles in these sediments have visualized the sediments are shown to be highly eccentric oblate spheroids (disks) that grow either by bubbles as essentially spherical (e.g., Wheeler, fracturing the sediment or by reopening preexisting fractures. In contrast, bubbles in soft 1988; Sills et al., 1991), with the implication, sandy sediment tend to be spherical, suggesting that sand acts fluidly or plastically in intentional or not, that the surrounding mediresponse to growth stresses. We also present bubble-rise results from gelatin, a mechan-um reacts fluidly or plastically to their growth ically similar but transparent medium, that suggest that initial rise is also accomplished and rise. Scientists and engineers have develby fracture. Given that muddy sediments are elastic and yield by fracture, it becomes oped an impressive understanding of bubble much easier to explain physically related phenomena such as seafloor pockmark forma-growth in fluids, and a vast literature covers tion, animal burrowing, and gas buildup during methane hydrate melting.the topic (e.g., Clift et al., 1978; Lohse, 2003). However, we show here that muddy sediment Keywords: bubbles, mud, fracture, methane.does not respond mechanically either a...
Rapid advances in molecular microbial ecology have yielded an unprecedented amount of data about the evolutionary relationships and functional traits of microbial communities that regulate global geochemical cycles. Biogeochemical models, however, are trailing in the wake of the environmental genomics revolution, and such models rarely incorporate explicit representations of bacteria and archaea, nor are they compatible with nucleic acid or protein sequence data. Here, we present a functional gene-based framework for describing microbial communities in biogeochemical models by incorporating genomics data to provide predictions that are readily testable. To demonstrate the approach in practice, nitrogen cycling in the Arabian Sea oxygen minimum zone (OMZ) was modeled to examine key questions about cryptic sulfur cycling and dinitrogen production pathways in OMZs. Simulations support previous assertions that denitrification dominates over anammox in the central Arabian Sea, which has important implications for the loss of fixed nitrogen from the oceans. Furthermore, cryptic sulfur cycling was shown to attenuate the secondary nitrite maximum often observed in OMZs owing to changes in the composition of the chemolithoautotrophic community and dominant metabolic pathways. Results underscore the need to explicitly integrate microbes into biogeochemical models rather than just the metabolisms they mediate. By directly linking geochemical dynamics to the genetic composition of microbial communities, the method provides a framework for achieving mechanistic insights into patterns and biogeochemical consequences of marine microbes. Such an approach is critical for informing our understanding of the key role microbes play in modulating Earth's biogeochemistry.
SummaryWarm fluids emanating from hydrothermal vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent systems on the Mid‐Cayman Rise each exhibits novel geologic settings and distinctively hydrogen‐rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding reactions, abundance, community composition, diversity, and function of microbes in venting fluids from both sites: Piccard, the world's deepest vent site, hosted in mafic rocks; and Von Damm, an adjacent, ultramafic‐influenced system. Von Damm hosted a wider diversity of lineages and metabolisms in comparison to Piccard, consistent with thermodynamic models that predict more numerous energy sources at ultramafic systems. There was little overlap in the phylotypes found at each site, although similar and dominant hydrogen‐utilizing genera were present at both. Despite the differences in community structure, depth, geology, and fluid chemistry, energetic modelling and metagenomic analysis indicate near functional equivalence between Von Damm and Piccard, likely driven by the high hydrogen concentrations and elevated temperatures at both sites. Results are compared with hydrothermal sites worldwide to provide a global perspective on the distinctiveness of these newly discovered sites and the interplay among rocks, fluid composition and life in the subseafloor.
[1] An understanding of the mechanics of bubble rise in sediments is essential because of the role of bubbles in releasing methane to the atmosphere and the formation and melting of gas hydrates. Past models to describe and predict the rise of other buoyant geological bodies through a surrounding solid (e.g., magmas and hydrofractures) appear not to be applicable to bubbles in soft sediments, and this paper presents a new model for gas bubble rise in soft, fine-grained, cohesive sediments. Bubbles in such sediments are essentially "dry" (little if any free water) and grow through a process of elastic expansion and fracture that can be described using the principles of linear elastic fracture mechanics, which assume the existence of a spectrum of flaws within the sediment fabric. By extending this theory, we predict that bubbles initially rise by preferential propagation of a fracture in a (sub) vertical direction. We present a criterion for initial bubble rise. Once rise is initiated, the speed of rise is controlled by the viscoelastic response of the sediments to stress. Using this new bubble rise model, we estimate rise velocities to be of the order of centimeters per second. We again show that capillary pressure plays no substantive role in controlling bubble growth or rise.
Biologically available nitrogen is removed from ecosystems through the microbial processes of anaerobic ammonium oxidation (anammox) or denitrification, while dissimilatory nitrate reduction to ammonium (DNRA) retains it. A mechanistic understanding of controls on partitioning among these pathways is currently lacking. The objective of this study was to conduct a manipulative experiment to determine the influence of organic carbon and nitrate loading on partitioning. Sediment was collected from a location on the southern New England shelf (78 m water depth) and sieved. Half of the sediment was mixed with freeze-dried phytoplankton and the other half was not. Sediment was then spread into 1.5 mm, "thin discs" closed at the bottom and placed in large aquarium tanks with filtered, N 2 /CO 2 sparged seawater to maintain oxygen limited conditions. Half of the discs received high nitrate loading, while the other half received low nitrate loading, resulting in a multifactorial design with four treatments: no C addition, low nitrate (-C-N); C addition, low nitrate (+C-N); no C addition, high nitrate (-C+N); and C addition, high nitrate (+C+N). Sediment discs were incubated in the tanks for 7 weeks, during which time inorganic N (ammonium, nitrate, and nitrite) was monitored, and sediment discs were periodically removed from the tanks to conduct 15 N isotope labeling experiments in vials to measure potential rates of anammox, denitrification, and DNRA. Temporal dynamics of inorganic N concentrations in the tanks were indicative of anoxic N metabolism, with strong response of the build up or consumption of the intermediate nitrite, depending on treatments. Vial incubation experiments with added 15 NO 2-+ 14 NH 4 + indicated significant denitrification and DNRA activity in sediment thin discs, but incubations with added
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.