Graves' disease (GD) is a common autoimmune disease (AID) that shares many of its susceptibility loci with other AIDs. The thyroid stimulating hormone receptor (TSHR) represents the primary autoantigen in GD, in which autoantibodies bind to the receptor and mimic its ligand, thyroid stimulating hormone, causing the characteristic clinical phenotype. Although early studies investigating the TSHR and GD proved inconclusive, more recently we provided convincing evidence for association of the TSHR region with disease. In the current study, we investigated a combined panel of 98 SNPs, including 70 tag SNPs, across an extended 800 kb region of the TSHR to refine association in a cohort of 768 GD subjects and 768 matched controls. In total, 28 SNPs revealed association with GD (P < 0.05), with strongest SNP associations at rs179247 (chi(2) = 32.45, P = 8.90 x 10(-8), OR = 1.53, 95% CI = 1.32-1.78) and rs12101255 (chi(2) = 30.91, P = 1.95 x 10(-7), OR = 1.55, 95% CI = 1.33-1.81), both located in intron 1 of the TSHR. Association of the most associated SNP, rs179247, was replicated in 303 GD families (P = 7.8 x 10(-4)). In addition, we provide preliminary evidence that the disease-associated genotypes of rs179247 (AA) and rs12101255 (TT) show reduced mRNA expression ratios of flTSHR relative to two alternate TSHR mRNA splice variants.
Non-homologous end-joining is a major pathway of DNA double-strand break repair in mammalian cells, deficiency in which confers radiosensitivity and immune deficiency at the whole organism level. A core protein complex comprising the Ku70/80 heterodimer together with a complex between DNA ligase IV and XRCC4 is conserved throughout eukaryotes and assembles at double-strand breaks to mediate ligation of broken DNA ends. In Saccharomyces cerevisiae an additional NHEJ protein, Nej1p, physically interacts with the ligase IV complex and is required in vivo for ligation of DNA double-strand breaks. Recent studies with cells derived from radiosensitive and immune-deficient patients have identified the human protein, XLF (also named Cernunnos), as a crucial NHEJ protein. Here we show that XLF and Nej1p are members of the same protein superfamily and that this family has members in diverse eukaryotes. Indeed, we show that a member of this family encoded by a previously uncharacterized open-reading frame in the Schizosaccharomyces pombe genome is required for NHEJ in this organism. Furthermore, our data reveal that XLF family proteins can bind to DNA and directly interact with the ligase IV-XRCC4 complex to promote DSB ligation. We therefore conclude that XLF family proteins interact with the ligase IV-XRCC4 complex to constitute the evolutionarily conserved enzymatic core of the NHEJ machinery.The repair of DNA double-strand breaks (DSBs) 3 is crucial for the maintenance of genomic integrity (1, 2). In mammalian cells, non-homologous end-joining (NHEJ) is the predominant pathway for DSB repair, particularly in the G 0 and G 1 phases of the cell cycle, and is mediated by the Ku70/Ku80 heterodimer, the DNA-dependent protein kinase catalytic subunit (DNAPKcs), XRCC4 and DNA ligase IV (3, 4). It is believed that during NHEJ, newly created DSB ends are bound by the Ku heterodimer (5, 6) and subsequently, DNA-PKcs is recruited upon inward translocation of Ku70/Ku80 (7-9). The Ku-DNA-PKcs complex is thought to stabilize the DNA ends and prevent extensive end resection (10), and most likely also plays an important role in aligning the DNA termini (11-14). The DNAPKcs-Ku complex then promotes the recruitment of a preformed complex between XRCC4 and DNA ligase IV (ligase IV), which mediates the final ligation steps of the NHEJ process (8, 15).XRCC4 is a ϳ36-kDa protein that consists of a globular N-terminal domain followed by a protruding coiled-coil arm (16,17). It has been well established that XRCC4 forms homodimers, as well as higher order multimers (16 -19), and that an active ligase IV complex is most likely composed of one XRCC4 homodimer bound to one ligase IV molecule (17, 18). Significantly, XRCC4 not only promotes ligase IV activity but is also required for ligase protein stability (20,21). In addition to the above core set of NHEJ proteins, a number of other factors have been identified that are required for the efficient repair of DSBs by NHEJ. These factors, most prominently Artemis (22, 23), polynucleotide kinase ...
Arthrogryposis–renal dysfunction–cholestasis (ARC) syndrome is a rare autosomal recessive multisystem disorder caused by mutations in vacuolar protein sorting 33 homologue B (VPS33B) and VPS33B interacting protein, apical–basolateral polarity regulator (VIPAR). Cardinal features of ARC include congenital joint contractures, renal tubular dysfunction, cholestasis, severe failure to thrive, ichthyosis, and a defect in platelet alpha-granule biogenesis. Most patients with ARC do not survive past the first year of life. We report two patients presenting with a mild ARC phenotype, now 5.5 and 3.5 years old. Both patients were compound heterozygotes with the novel VPS33B donor splice-site mutation c.1225+5G>C in common. Immunoblotting and complementary DNA analysis suggest expression of a shorter VPS33B transcript, and cell-based assays show that c.1225+5G>C VPS33B mutant retains some ability to interact with VIPAR (and thus partial wild-type function). This study provides the first evidence of genotype–phenotype correlation in ARC and suggests that VPS33B c.1225+5G>C mutation predicts a mild ARC phenotype. We have established an interactive online database for ARC (https://grenada.lumc.nl/LOVD2/ARC) comprising all known variants in VPS33B and VIPAR. Also included in the database are 15 novel pathogenic variants in VPS33B and five in VIPAR. Hum Mutat 33:1656–1664, 2012. © 2012 Wiley Periodicals, Inc.
Born at 27 weeks gestation, a child of consanguineous parents of Pakistani origin required prolonged parenteral nutrition. She developed jaundice, with extensive fibrosis and architectural distortion at liver biopsy; jaundice resolved with supportive care. Serum γ-glutamyl transpeptidase values were within normal ranges. The bile acids in her plasma and urine were >85% unconjugated (non-amidated). Two genes encoding bile-acid amidation enzymes were sequenced. No mutations were found in BAAT, encoding bile acid-CoA : aminoacid N-acyl transferase. The patient was homozygous for the missense mutation c.1012C > T in SLC27A5, predicted to alter a highly conserved amino-acid residue (p.H338Y) in bile acid-CoA ligase (BACL). She also was homozygous for the missense mutation c.1772A > G in ABCB11, predicted to alter a highly conserved amino-acid residue (p.N591S) in bile salt export pump (BSEP). BACL is essential for reconjugation of bile acids deconjugated by gut bacteria, and BSEP is essential for hepatocyte-canaliculus export of conjugated bile acids. A female sibling born at term had the same bile-acid phenotype and SLC27A5 genotype, without clinical liver disease. She was heterozygous for the c.1772A > G ABCB11 mutation. This is the first report of a mutation in SLC27A5. The amidation defect may have contributed to cholestatic liver disease in the setting of prematurity, parenteral nutrition, and homozygosity for an ABCB11 mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.