We have developed a pixellated high energy X-ray detector instrument to be used in a variety of imaging applications. The instrument consists of either a Cadmium Zinc Telluride or Cadmium Telluride (Cd(Zn)Te) detector bump-bonded to a large area ASIC and packaged with a high performance data acquisition system. The 80 by 80 pixels each of 250 μm by 250 μm give better than 1 keV FWHM energy resolution at 59.5 keV and 1.5 keV FWHM at 141 keV, at the same time providing a high speed imaging performance. This system uses a relatively simple wire-bonded interconnection scheme but this is being upgraded to allow multiple modules to be used with very small dead space. The readout system and the novel interconnect technology is described and how the system is performing in several target applications.
We report the results from an operando XRD-CT study of a working catalytic membrane reactor for the oxidative coupling of methane. These results reveal the importance of the evolving solid state chemistry during catalytic reaction, particularly the chemical interaction between the catalyst and the oxygen transport membrane.
We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography.
This paper reports a simple but effective filtering approach to deal with single‐crystal artefacts in X‐ray diffraction computed tomography (XRD‐CT). In XRD‐CT, large crystallites can produce spots on top of the powder diffraction rings, which, after azimuthal integration and tomographic reconstruction, lead to line/streak artefacts in the tomograms. In the simple approach presented here, the polar transform is taken of collected two‐dimensional diffraction patterns followed by directional median/mean filtering prior to integration. Reconstruction of one‐dimensional diffraction projection data sets treated in such a way leads to a very significant improvement in reconstructed image quality for systems that exhibit powder spottiness arising from large crystallites. This approach is not computationally heavy which is an important consideration with big data sets such as is the case with XRD‐CT. The method should have application to two‐dimensional X‐ray diffraction data in general where such spottiness arises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.