Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets) was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments.
With increasing demand for mineral resources, extraction of polymetallic sulphides at hydrothermal vents, cobalt-rich ferromanganese crusts at seamounts, and polymetallic nodules on abyssal plains may be imminent. Here, we shortly introduce ecosystem characteristics of mining areas, report on recent mining developments, and identify potential stress and disturbances created by mining. We analyze species' potential resistance to future mining and perform meta-analyses on population density and diversity recovery after disturbances most similar to mining: volcanic eruptions at vents, fisheries on seamounts, and experiments that mimic nodule mining on abyssal plains. We report wide variation in recovery rates among taxa, size, and mobility of fauna. While densities and diversities of some taxa can recover to or even exceed pre-disturbance levels, community composition remains affected after decades. The loss of hard substrata or alteration of substrata composition may cause substantial community shifts that persist over geological timescales at mined sites.
In international fisheries management, scientific advice on the presence of "vulnerable marine ecosystems" (VMEs) per United Nations resolutions, has generally used qualitative assessments based on expert judgment of the occurrence of indicator taxa such as cold-water corals and sponges. Use of expert judgment alone can be criticized for inconsistency and sometimes a lack of transparency; therefore, development of robust and repeatable numeric methods to detect the presence of VMEs would be advantageous. Here, we present a multi-criteria assessment (MCA) method to evaluate how likely a given area of seafloor represents a VME. The MCA is a taxa-dependent spatial method that accounts for both the quantity and data quality available. This was applied to a database of records of VMEs built, held and compiled by the International Council for the Exploration of the Sea (ICES). A VME index was generated which ranged from 1.51 to 4.52, with 5.0 being reserved for confirmed VME habitats. An index of confidence was also computed that ranged from 0.0 to 0.75, with 1 being reserved for those confirmed VME habitats. Overall the MCA captured the important elements of the ICES VME database and provided a simplified, spatially aggregated, and weighted estimate of how likely a given area is to contain VMEs. The associated estimate of confidence gave an indication of how uncertain that assessment was for the same given area. This methodology provides a more systematic and standardized approach for assessing the likelihood of presence of VMEs in the NorthEast Atlantic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.