Purpose Comparing radiation treatment plans by using the same safety margins and dose objectives for all techniques, to ascertain the optimal radiation technique for the stereotactic body radiotherapy (SBRT) of low-risk prostate cancer. Material and methods Treatment plans for 27 randomly selected patients were compared using intensity-modulated (IMRT) techniques as Sliding Window (SW), volumetric modulated arc therapy (VMAT), and helical tomotherapy (HT), as well as Cyber Knife (CK) system. The target dose was calculated to 36.25 Gy delivered in five fractions over 1 week. Dosimetric indices for target volume and organs at risk (OAR) as well as normal tissue complication probability (NTCP) of late rectal and urinary bladder toxicities were analyzed. Results The CK provided lower homogeneity in the target volume, but higher values for most of the conformity indices compared to the IMRT approaches. The SW demonstrated superior rectum sparing at medium-to-high dose range (V18 Gy - V32.6 Gy) compared to other techniques ( p < 0.05). The whole urinary bladder experienced the best shielding by SW and VMAT at the medium dose (V18 Gy, p < 0.05 versus CK), however we obtained no relevant differences between techniques at the high dose. Generally, the CK demonstrated significantly superior rectum and bladder exposure at V18 Gy as compared to HT, SW, and VMAT. For the rectum, mean NTCP values were significantly superior for HT (NTCP = 2.3%, p < 0.05), and for urinary bladder, the NTCP showed no significant advantages for any technique. Conclusion No absolute dosimetric advantage was revealed to choose between CK or IMRT techniques for the SBRT of low-grade prostate cancer. Using the same safety margins and dose objectives, IMRT techniques demonstrated superior sparing of the rectum and bladder at a medium dose compared to CK. Comparing different IMRT approaches SW displayed superior rectum sparing at a medium-to-high dose range, whereas both SW and RA revealed superior bladder sparing compared to HT. HT demonstrated a significantly lower NTCP outcome compared to CK or IMRT techniques regarding the rectum. Radiation plans can be optimized further by an individual modification of dose objectives independent of the treatment plan strategy. Electronic supplementary material The online version of this article (10.1186/s13014-019-1353-6) contains supplementary material, which is available to authorized users.
The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies.
Objective The objective of this study was to assess the accuracy of 68Ga-PSMA-11 PET/MRI, 18F-PSMA-1007 PET/CT, 68Ga-PSMA-11 PET/CT, and multiparametric (mp)MRI for the delineating of dominant intraprostatic lesions (IPL). Materials and methods 35 patients with organ-confined prostate cancer who were assigned to definitive radiotherapy (RT) were divided into three groups based on imaging techniques: 68Ga-PSMA-PET/MRI (n = 9), 18F-PSMA-PET/CT (n = 16) and 68Ga-PSMA-PET/CT (n = 10). All patients without PSMA-PET/MRI received an additional mpMRI. PSMA-PET-based automatic isocontours and manual contours of the dominant IPLs were generated for each modality. The biopsy results were then used to validate whether any of the prostate biopsies were positive in the marked lesion using Dice similarity coefficient (DSC), Youden index (YI), sensitivity and specificity. Factors that can predict the accuracy of IPLs contouring were analysed. Results Diagnostic performance was significantly superior both for manual and automatic IPLs contouring using 68Ga-PSMA-PET/MRI (DSC/YI SUV70%—0.62/0.51), 18F-PSMA-PET/CT (DSC/YI SUV70%—0.67/0.53) or 68Ga-PSMA-PET/CT (DSC/YI SUV70%—0.63/0.51) compared to mpMRI (DSC/YI—0.47/0.41; p < 0.001). The accuracy for delineating IPLs was not improved by combination of PET/CT and mpMRI images compared to PET/CT alone. Significantly superior diagnostic accuracy was found for large prostate lesions (at least 15% from the prostate volume) and higher Gleason score (at least 7b) comparing to smaller lesions with lower GS. Conclusion IPL localization was significantly improved when using PSMA-imaging procedures compared to mpMRI. No significant difference for delineating IPLs was found between hybrid method PSMA-PET/MRI and PSMA-PET/CT. PSMA-based imaging technique should be considered for the diagnostics of IPLs and focal treatment modality.
Total body irradiation (TBI) is an essential part of various conditioning regimens prior to allogeneic stem cell transplantation, but is accompanied by relevant (long-term) toxicities. In the lungs, a complex mechanism induces initial inflammation (pneumonitis) followed by chronic fibrosis. The hereby presented analysis investigates the occurrence of pulmonary toxicity in a large patient collective and correlates it with data derived from normal tissue complication probability (NTCP) calculations. The clinical data of 335 hemato-oncological patients undergoing TBI were analyzed with a follow-up of 85 months. Overall, 24.8% of all patients displayed lung toxicities, predominantly pneumonia and pulmonary obstructions (13.4% and 6.0%, respectively). NTCP calculations estimated median risks to be 20.3%, 0.6% and 20.4% for overall pneumonitis (both radiological and clinical), symptomatic pneumonitis and lung fibrosis, respectively. These numbers are consistent with real-world data from the literature and further specify radiological and clinical apparent toxicity rates. Overall, the estimated risk for clinical apparent pneumonitis is very low, corresponding to the probability of non-infectious acute respiratory distress syndrome, although the underlying pathophysiology is not identical. Radiological pneumonitis and lung fibrosis are expected to be more common but require a more precise documentation by the transplantation team, radiologists and radiation oncologists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.