Prostate cancer is the most common malignancy in American men following skin cancer, with approximately one in eight men being diagnosed during their lifetime. Over the past several decades, the treatment of prostate cancer has evolved rapidly, so too has screening. Since the mid-2010s, magnetic resonance imaging (MRI)–guided biopsies or ‘targeted biopsies’ has been a rapidly growing topic of clinical research within the field of urologic oncology. The aim of this publication is to provide a review of biparametric MRI (bpMRI) utilization for the diagnosis of prostate cancer and a comparison to multiparametric MRI (mpMRI). Through single-centered studies and meta-analysis across all identified pertinent published literature, bpMRI is an effective tool for the screening and diagnosis of prostate cancer. When compared with the diagnostic accuracy of mpMRI, bpMRI identifies prostate cancer at comparable rates. In addition, when omitting dynamic contrast-enhanced (DCE) protocol to the MRI, patients incur reduced costs and shorter imaging time while providers can offer more tests to their patient population.
African American (AA) men have increased risk of prostate cancer diagnosis and mortality, but the cause remains unknown. MRI fusion improves diagnosis of localized prostate cancer, particularly in anterior lesions; however, cost and access are limited in a community practice setting. By utilizing a diverse cohort of veterans with equal access to care in a single payer system, we describe prostate cancer detection. We queried a prospectively maintained institutional review board-approved database of men undergoing prostate biopsy for untreated prostate cancer. We included all consecutive patients from October 2017 to February 2020. Statistical analysis including Kaplan–Meier Curves, Fisher’s exact test, and Forest plot was performed. From 246 consecutive patients, 166 were AA and 80 were non-AA. There were similar distributions of PSA, PSAD, and number of targetable lesions between the AA and non-AA cohort (p > 0.05 for all). We found no difference in location on MRI between race groups. There was similar cancer detection, focusing on anterior lesions and rate of positive Gleason grade (≥GG1) and clinically significant (≥GG2) cancer between cohorts. In a predominant AA cohort of veterans, we found similar distribution of location for MRI-targeted lesions, along with rates of tumor detection and aggressiveness of disease. In this single payer veteran population, we did not identify specific biologic differences inherent to tumor detection between AA and non-AA patients.
The use of multi-parametric magnetic resonance imaging (mpMRI) in conjunction with the Prostate Imaging Reporting and Data System (PI-RADS) is standard practice in the diagnosis, surveillance, and staging of prostate cancer. The risk associated with lesions graded at a PI-RADS score of 3 is ambiguous. Further characterization of the risk associated with PI-RADS 3 lesions would be useful in guiding further work-up and intervention. This study aims to better characterize the utility of PI-RADS 3 and associated risk factors in detecting clinically significant prostate cancer. From a prospectively maintained IRB-approved dataset of all veterans undergoing mpMRI fusion biopsy at the Southeastern Louisiana Veterans Healthcare System, we identified a cohort of 230 PI-RADS 3 lesions from a dataset of 283 consecutive UroNav-guided biopsies in 263 patients from October 2017 to July 2020. Clinically significant prostate cancer (Gleason Grade ≥ 2) was detected in 18 of the biopsied PI-RADS 3 lesions, representing 7.8% of the overall sample. Based on binomial analysis, PSA densities of 0.15 or greater were predictive of clinically significant disease, as was PSA. The location of the lesion within the prostate was not shown to be a statistically significant predictor of prostate cancer overall (p = 0.87), or of clinically significant disease (p = 0.16). The majority of PI-RADS 3 lesions do not represent clinically significant disease; therefore, it is possible to reduce morbidity through biopsy. PSA density is a potential adjunctive factor in deciding which patients with PI-RADS 3 lesions require biopsy. Furthermore, while the risk of prostate cancer for African-American men has been debated in the literature, our findings indicate that race is not predictive of identifying prostate cancer, with comparable Gleason grade distributions on histology between races.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.