This paper presents an automated, model-free, datadriven method for the safe tuning of PID cascade controller gains based on Bayesian optimization. The optimization objective is composed of data-driven performance metrics and modelled using Gaussian processes. The safety requirement is imposed via a barrier-like term in the objective, which is introduced to account for operational changes in the system. We further introduce a data-driven constraint that captures the stability requirements from system data. Numerical evaluation shows that the proposed approach outperforms relay feedback autotuning and quickly converges to the global optimum, thanks to a tailored stopping criterion. We demonstrate the performance of the method in simulations and experiments. For experimental implementation, in addition to the introduced safety constraint, we integrate a method for automatic detection of the critical gains and extend the optimization objective with a penalty depending on the proximity of the current candidate points to the critical gains. The resulting automated tuning method optimizes system performance while ensuring stability and standardization.
Adaptive control approaches yield highperformance controllers when a precise system model or suitable parametrizations of the controller are available. Existing data-driven approaches for adaptive control mostly augment standard model-based methods with additional information about uncertainties in the dynamics or about disturbances. In this work, we propose a purely data-driven, model-free approach for adaptive control. Tuning low-level controllers based solely on system data raises concerns on the underlying algorithm safety and computational performance. Thus, our approach builds on GOOSE, an algorithm for safe and sample-efficient Bayesian optimization. We introduce several computational and algorithmic modifications in GOOSE that enable its practical use on a rotational motion system. We numerically demonstrate for several types of disturbances that our approach is sample efficient, outperforms constrained Bayesian optimization in terms of safety, and achieves the performance optima computed by grid evaluation. We further demonstrate the proposed adaptive control approach experimentally on a rotational motion system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.