The capability for in vitro expansion of human neural stem cells (HNSCs) provides a well characterized and unlimited source alternative to using primary fetal tissue for neuronal replacement therapies. The HNSCs, injected into the lateral ventricle of 24-month-old rats after in vitro expansion, displayed extensive and positional incorporation into the aged host brain with improvement of cognitive score assessed by the Morris water maze after 4 weeks of the transplantation. Our results demonstrate that the aged brain is capable of providing the necessary environment for HNSCs to retain their pluripotent status and suggest the potential for neuroreplacement therapies in age-associated neurodegenerative disease.
Although amyloid beta (Abeta) deposition has been a hallmark of Alzheimer's disease (AD), the absence of a phenotype in the beta amyloid precursor protein (APP) knockout mouse, tends to detract our attention away from the physiological functions of APP. Although much attention has been focused on the neurotoxicity of Abeta, many studies suggest the involvement of APP in neuroplasticity. We found that secreted amyloid precursor protein (sAPP) increased the differentiation of human neural stem cells (hNSCs) in vitro, while an antibody-recognizing APP dose-dependently inhibited these activities. With a high dose of sAPP treatment or wild-type APP gene transfection, hNSCs were differentiated into astrocytes rather than neurons. In vivo, hNSCs transplanted into APP-transgenic mouse brain exhibited glial differentiation rather than neural differentiation. Our results suggest that APP regulates neural stem cell biology in the adult brain, and that altered APP metabolism in Down syndrome or AD may have implications for the pathophysiology of these diseases.
Stem cells are exciting candidates for therapeutic strategies in neurodegenerative diseases, due to their multipotency and migratory capabilities. We show that stem cell-like embryonic normal human neural progenitors (HNPs) are capable of proliferating in response to mitogenic growth factors and differentiate into diverse CNS cell types in vitro. We present evidence that HNPs differentiate to beta III-tubulin-, glial fibrillary acidic protein- and O4-immuno-positive cells, in both a fetal bovine serum-containing and a non-supplemented, serum-free basal medium. From these findings, we propose that HNPs may differentiate not only in response to exogenous differentiation factor(s) contained in the serum, but also in response to some endogenous factor(s) released from the HNPs, which may regulate the differentiation pathway of these cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.