Induced pluripotent stem cells (iPSC) have revolutionized the stem cell field. iPSC are most often produced by using retroviruses. However, the resulting cells may be ill-suited for clinical applications. Many alternative strategies to make iPSC have been developed, but the non-integrating strategies tend to be inefficient, while the integrating strategies involve random integration. Here we report a facile strategy to create murine iPSC that utilizes plasmid DNA and single transfection with sequence-specific recombinases. PhiC31 integrase was used to insert the reprogramming cassette into the genome, producing iPSC. Cre recombinase was then employed for excision of the reprogramming genes. The iPSC were demonstrated to be pluripotent by in vitro and in vivo criteria, both before and after excision of the reprogramming cassette. This strategy is comparable to retroviral approaches in efficiency, but is non-hazardous for the user, simple to perform, and results in non-random integration of a reprogramming cassette that can be readily deleted. We demonstrated the efficiency of this reprogramming and excision strategy in two accessible cell types, fibroblasts and adipose stem cells. This simple strategy produces pluripotent stem cells that have the potential to be used in a clinical setting.
Hemophilia B, a hereditary bleeding disorder caused by a deficiency of coagulation factor IX (FIX), is an excellent candidate for gene therapy. However, to date, success in hemophilia gene therapy clinical trials has been limited due to failure to achieve or sustain therapeutic levels of factor expression. The phiC31 integrase system efficiently integrates plasmid DNA carrying a transgene and an attB site into a limited number of endogenous pseudo attP sites in mammalian genomes, leading to robust, sustained transgene expression. A strategy utilizing plasmid DNA integrated with phiC31 integrase may offer a facile and safe alternative for sustained human FIX (hFIX) expression. Hydrodynamic tail vein injection was used for delivery of plasmids encoding phiC31 integrase and hFIX to the liver of FIX knockout mice. We demonstrated prolonged therapeutic levels of hFIX in this knockout mouse model of hemophilia B over a 6-month time course when phiC31 integrase was used. Additionally, we observed sustained FIX activity in plasma and phenotypic correction of bleeding after tail clip in phiC31-treated mice. In the livers that received integrase, we also demonstrated prolonged hFIX expression in hepatocytes by immunohistochemistry and documented sequence-specific genomic integration of the hFIX plasmid. These studies suggest the possibility that a similar approach in large animals and humans could lead to a simple and successful gene therapy for hemophilia.
Introduction: Angiopoietin-like (ANGPTL) proteins belong to a family of eight secreted factors that are structurally related to proteins that modulate angiogenesis; these are commonly known as angiopoietins. Angiopoietin-like proteins, ANGPTL3, ANGPTL4, and ANGPTL8 (the "ANGPT L3-4-8 triad"), have surfaced as principal regulators of plasma lipid metabolism by functioning as potent inhibitors of lipoprotein lipase. The targeting of these proteins may open up future therapeutic avenues for metabolic and cardiovascular disease.Areas covered: This article systematically summarizes the compelling literature that describes the mechanistic roles of ANGPTL3, 4, and 8 in lipid metabolism; this emphasizes their importance in determining the risk of cardiovascular disease. We shed light on population-based studies linking loss-of-function variations in ANGPTL3, 4, and 8 with decreased risk of metabolic conditions and cardiovascular disorders. We also discuss how the targeting of the ANGPT L3-4-8 triad could one day offer therapeutic benefit.Expert opinion: Monoclonal antibodies and antisense oligonucleotides that target ANGPTL3, 4, and 8 are potentially an efficient therapeutic strategy for hypertriglyceridemia and cardiovascular risk reduction, especially in patients with limited treatment options. These innovative therapeutical approaches are at an embryonic stage in development and hence further investigations are necessary for eventual use in humans.
A cell therapy strategy utilizing genetically-corrected induced pluripotent stem cells (iPSC) may be an attractive approach for genetic disorders such as muscular dystrophies. Methods for genetic engineering of iPSC that emphasize precision and minimize random integration would be beneficial. We demonstrate here an approach in the mdx mouse model of Duchenne muscular dystrophy that focuses on the use of site-specific recombinases to achieve genetic engineering. We employed non-viral, plasmid-mediated methods to reprogram mdx fibroblasts, using phiC31 integrase to insert a single copy of the reprogramming genes at a safe location in the genome. We next used Bxb1 integrase to add the therapeutic full-length dystrophin cDNA to the iPSC in a site-specific manner. Unwanted DNA sequences, including the reprogramming genes, were then precisely deleted with Cre resolvase. Pluripotency of the iPSC was analyzed before and after gene addition, and ability of the genetically corrected iPSC to differentiate into myogenic precursors was evaluated by morphology, immunohistochemistry, qRT-PCR, FACS analysis, and intramuscular engraftment. These data demonstrate a non-viral, reprogramming-plus-gene addition genetic engineering strategy utilizing site-specific recombinases that can be applied easily to mouse cells. This work introduces a significant level of precision in the genetic engineering of iPSC that can be built upon in future studies.
The potential use of the ΦC31 integrase system in gene therapy opens up the possibilities of new treatments for old diseases. ΦC31 integrase mediates the integration of plasmid DNA into the chromsomes of mammalian cells in a sequence-specific manner, resulting in robust, long-term transgene expression. In this article, we review how ΦC31 integrase mediates transgene integration into the genomes of target cells and summarize the recent preclinical applications of the system to gene therapy. These applications encompass in vivo studies in liver and lung, as well as increasing ex vivo uses of the system, including in neural and muscle stem cells, in cord-lining epithelial cells, and for the production of induced pluripotent stem cells. The safety of the ΦC31 integrase system for gene therapy is evaluated, and its ability to provide treatments for hemophilia is discussed. We conclude that gene therapy strategies utilizing ΦC31 integrase offer great promise for the development of treatments in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.