The complement system, consisting of soluble and cell membrane-bound components of the innate immune system, has defined roles in the pathophysiology of renal allograft rejection. Notably, the unavoidable ischemia-reperfusion injury inherent to transplantation is mediated through the terminal complement activation products C5a and C5b-9. Furthermore, biologically active fragments C3a and C5a, produced during complement activation, can modulate both antigen presentation and T cell priming, ultimately leading to allograft rejection. Earlier work identified renal tubule cell synthesis of C3, rather than hepatic synthesis of C3, as the primary source of C3 driving these effects. Recent efforts have focused on identifying the local triggers of complement activation. Collectin-11, a soluble C-type lectin expressed in renal tissue, has been implicated as an important trigger of complement activation in renal tissue. In particular, collectin-11 has been shown to engage L-fucose at sites of ischemic stress, activating the lectin complement pathway and directing the innate immune response to the distressed renal tubule. The interface between collectin-11 and L-fucose, in both the recipient and the allograft, is an attractive target for therapies intended to curtail renal inflammation in the acute phase.
An application of ion exchange chromatography for C-peptide analysis is described here. At the stage of C-peptide isolation, a strong cation exchanger (SP HP or MonoS) was used to purify the analyte from ballast proteins and peptides. The conditions of ion-exchange chromatographic separations were optimized using theoretical modeling of the net surface electric charge of the peptide as a function of pH. The purified and concentrated sample was further subjected to LC-MS/MS. In order to improve the reliability of analysis, two fragment ions were monitored simultaneously both for native C-peptide and internal standard, isotopically labeled C-peptides analogues (fragments with m/z of 927.7 and 147.2). Using ion-exchange chromatography, it became possible to process larger sample volumes, important for testing patients with very low C peptide levels, compared to currently used solid phase extraction methods.
In a recent study, we identified a fucosylated damage‐associated ligand exposed by ischemia on renal tubule epithelial cells, which after recognition by collectin‐11 (CL‐11 or collectin kidney 1 (CL‐K1)), initiates complement activation and acute kidney injury. We exploited the ability to increase the local tissue concentration of free l‐fucose following systemic administration, in order to block ligand binding by local CL‐11 and prevent complement activation. We achieved a thirty‐five‐fold increase in the intrarenal concentration of l‐fucose following an IP bolus given before the ischemia induction procedure ‐ a concentration found to significantly block in vitro binding of CL‐11 on hypoxia‐stressed renal tubule cells. At this l‐fucose dose, complement activation and acute post‐ischemic kidney injury are prevented, with additional protection achieved by a second bolus after the induction procedure. CL‐11−/− mice gained no additional protection from l‐fucose administration, indicating that the mechanism of l‐fucose therapy was largely CL‐11‐dependent. The hypothesis is that a high dose of l‐fucose delivered to the kidney obstructs the carbohydrate recognition site on CL‐11 thereby reducing complement‐mediated damage following ischemic insult. Further work will examine the utility in preventing post‐ischemic injury during renal transplantation, where acute kidney injury is known to correlate with poor graft survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.