Systemic lupus erythematosus (SLE; OMIM 152700) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry: a new GWAS, meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including 10 novel associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n=16) of transcription factors among SLE susceptibility genes. This supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE.
BackgroundThe molecular heterogeneity of autoimmune and inflammatory diseases has been one of the main obstacles to the development of safe and specific therapeutic options. Here, we evaluated the diagnostic and clinical value of a robust, inexpensive, immunoassay detecting the circulating soluble form of the monocyte-specific surface receptor sialic acid binding Ig-like lectin 1 (sSIGLEC-1).MethodsWe developed an immunoassay to measure sSIGLEC-1 in small volumes of plasma/serum from systemic lupus erythematosus (SLE) patients (n = 75) and healthy donors (n = 504). Samples from systemic sclerosis patients (n = 99) were studied as an autoimmune control. We investigated the correlation between sSIGLEC-1 and both monocyte surface SIGLEC-1 and type I interferon-regulated gene (IRG) expression. Associations of sSIGLEC-1 with clinical features were evaluated in an independent cohort of SLE patients (n = 656).ResultsPlasma concentrations of sSIGLEC-1 strongly correlated with expression of SIGLEC-1 on the surface of blood monocytes and with IRG expression in SLE patients. We found ancestry-related differences in sSIGLEC-1 concentrations in SLE patients, with patients of non-European ancestry showing higher levels compared to patients of European ancestry. Higher sSIGLEC-1 concentrations were associated with lower serum complement component 3 and increased frequency of renal complications in European patients, but not with the SLE Disease Activity Index clinical score.ConclusionsOur sSIGLEC-1 immunoassay provides a specific and easily assayed marker for monocyte–macrophage activation, and interferonopathy in SLE and other diseases. Further studies can extend its clinical associations and its potential use to stratify patients and as a secondary endpoint in clinical trials.Electronic supplementary materialThe online version of this article (10.1186/s13075-018-1649-1) contains supplementary material, which is available to authorized users.
A key aspect to finding an efficacious human immunodeficiency virus (HIV) vaccine is the optimization of vaccine schedules that can mediate the efficient maturation of protective immune responses. In the present study, we investigated the effect of alternate booster regimens on the immune responses to a candidate HIV-1 clade C CN54gp140 envelope protein, which was coadministered with the TLR4-agonist glucopyranosyl lipid A-aqueous formulation. Twelve study participants received a common three-dose intramuscular priming series followed by a final booster at either 6 or 12 months. The two homologous prime-boost regimens were well tolerated and induced CN54gp140-specific responses that were observed in both the systemic and mucosal compartments. Levels of vaccine-induced IgG-subclass antibodies correlated significantly with FcγR engagement, and both vaccine regimens were associated with strikingly similar patterns in antibody titer and FcγR-binding profiles. In both groups, identical changes in the antigen (Ag)-specific IgG-subclass fingerprint, leading to a decrease in IgG1 and an increase in IgG4 levels, were modulated by booster injections. Here, the dissection of immune profiles further supports the notion that prime-boost strategies are essential for the induction of diverse Ag-specific HIV-1 responses. The results reported here clearly demonstrate that identical responses were effectively and safely induced by both vaccine regimens, indicating that an accelerated 6-month regimen could be employed for the rapid induction of immune responses against CN54gp140 with no apparent impact on the overall quality of the induced immune response. (This study has been registered at under registration no. NCT01966900.)
We report the development of a novel flow cytometry-based Ig capture assay (ICA) for the identification and sorting of individual Ab-secreting cells based on their Ag reactivity. The ICA represents a fast and versatile tool for single-cell sorting of peripheral plasmablasts, streamlining subsequent Ab analysis, and cloning. We demonstrate the utility of the assay by isolating Ag-reactive plasmablasts from cryopreserved PBMC obtained from volunteers vaccinated with a recombinant HIV envelope protein. To show the specificity of the ICA, we produced Ag-specific Abs from these cells and subsequently verified their Ag reactivity via ELISA. Furthermore, we used the ICA to track Ag-specific plasmablast responses in HIV-vaccine recipients over a period of 42 d and performed a head-to-head comparison with a conventional B cell ELISpot. Results were highly comparable, highlighting that this assay is a viable alternative for monitoring Ag-specific plasmablast responses at early time points after infection or vaccination. The ICA provides important added benefits in that phenotypic information can be obtained from the identified Ag-specific cells that can then be captured for downstream applications such as B cell sequencing and/or Ab cloning. We envisage the ICA as being a useful tool in Ab repertoire analysis for future clinical trials.
IFN-γ-producing T helper 1 (Th1) cell responses mediate protection against infections but uncontrolled Th1 activity also contributes to a broad range of autoimmune diseases. Autocrine complement activation has recently emerged as key in the induction and contraction of human Th1 immunity: activation of the complement regulator CD46 and the C3aR expressed by CD4+ T cells via autocrine generated ligands C3b and C3a, respectively, are critical to IFN-γ production. Further, CD46-mediated signals also induce co-expression of immunosuppressive IL-10 in Th1 cells and transition into a (self)-regulating and contracting phase. In consequence, C3 or CD46-deficient patients suffer from recurrent infections while dysregulation of CD46 signaling contributes to Th1 hyperactivity in rheumatoid arthritis and multiple sclerosis. Here, we report a defect in CD46-regulated Th1 contraction in patients with systemic lupus erythematosus (SLE). We observed that MMP-9-mediated increased shedding of soluble CD46 by Th1 cells was associated with this defect and that inhibition of MMP-9 activity normalized release of soluble CD46 and restored Th1 contraction in patients’ T cells. These data may deliver the first mechanistic explanation for the increased serum CD46 levels observed in SLE patients and indicate that targeting CD46-cleaving proteases could be a novel avenue to modulate Th1 responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.