Pseudomonas aeruginosa is an opportunistic pathogen that causes acute, invasive infections in immunocompromised individuals and chronic, persistent respiratory infections in individuals with cystic fibrosis (CF). The differential progression of acute or chronic infections involves the production of distinct sets of virulence factors. P. aeruginosa strains isolated from patients with acute respiratory infection are generally nonencapsulated and express a variety of invasive virulence factors, including flagella, the type III secretion system (T3SS), type IV pili (TFP), and multiple secreted toxins and degradative enzymes. Strains isolated from chronically infected CF patients, however, typically lack expression of invasive virulence factors and have a mucoid phenotype due to the production of an alginate capsule. The mucoid phenotype results from loss-offunction mutations in mucA, which encodes an anti-sigma factor that normally prevents alginate synthesis. Here, we report that the cyclic AMP/Vfr-dependent signaling (CVS) pathway is defective in mucA mutants and that the defect occurs at the level of vfr expression. The CVS pathway regulates the expression of multiple invasive virulence factors, including T3SS, exotoxin A, protease IV, and TFP. We further demonstrate that mucA-dependent CVS inhibition involves the alternative sigma factor AlgU (AlgT) and the response regulator AlgR but does not depend on alginate production. Our findings show that a single naturally occurring mutation leads to inverse regulation of virulence factors involved in acute and persistent infections. These results suggest that mucoid conversion and inhibition of invasive virulence determinants may both confer a selective advantage to mucA mutant strains of P. aeruginosa in the CF lung.
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic infections in individuals suffering from the genetic disorder cystic fibrosis. In P. aeruginosa, the transcriptional regulator AlgR controls a variety of virulence factors, including alginate production, twitching motility, biofilm formation, quorum sensing, and hydrogen cyanide (HCN) production. In this study, the regulation of HCN production was examined. Strains lacking AlgR or the putative AlgR sensor AlgZ produced significantly less HCN than did a nonmucoid isogenic parent. In contrast, algR and algZ mutants showed increased HCN production in an alginate-producing (mucoid) background. HCN production was optimal in a 5% O 2 environment. In addition, cyanide production was elevated in bacteria grown on an agar surface compared to bacteria grown in planktonic culture. A conserved AlgR phosphorylation site (aspartate at amino acid position 54), which is required for surfacedependent twitching motility but not alginate production, was found to be critical for cyanide production. Nuclease protection mapping of the hcnA promoter identified a new transcriptional start site required for HCN production. A subset of clinical isolates that lack this start site produced small amounts of cyanide. Taken together, these data show that the P. aeruginosa hcnA promoter contains three transcriptional start sites and that HCN production is regulated by AlgZ and AlgR and is maximal under microaerobic conditions when the organism is surface attached.
cPseudomonas aeruginosa virulence components are subject to complex regulatory control primarily through two-component regulatory systems that allow for sensing and responding to environmental stimuli. In this study, the expression and regulation of the P. aeruginosa AlgZR two-component regulatory system were examined. Primer extension and S1 nuclease protection assays were used to identify two transcriptional initiation sites for algR within the algZ coding region, and two additional start sites were identified upstream of the algZ coding region. The two algR transcriptional start sites, RT1 and RT2, are directly regulated by AlgU, consistent with previous reports of increased algR expression in mucoid backgrounds, and RpoS additionally plays a role in algR transcription. The expression of the first algZ promoter, ZT1, is entirely dependent upon Vfr for expression, whereas Vfr, RpoS, or AlgU does not regulate the second algZ promoter, ZT2. Western blot, real-time quantitative PCR (RTqPCR), and transcriptional fusion analyses show that algZR expression is Vfr dependent. The algZ and algR genes also are cotranscribed in both nonmucoid and mucoid backgrounds. Furthermore, algZR was found to be cotranscribed with hemCD by RT-PCR. RT-qPCR confirmed that hemC transcription in the PAO1 ⌬algZ mutant was 40% of the level of the wild-type strain. Taken together, these results indicate that algZR transcription involves multiple factors at multiple start sites that control individual gene expression as well as coexpression of this two-component system with heme biosynthetic genes. Pseudomonas aeruginosa is a human opportunistic pathogen capable of causing fatal infections in individuals with compromised innate immunity, such as those undergoing cancer treatment or those with severe burn wounds or cystic fibrosis (CF) (1-3). P. aeruginosa is one of the most clinically relevant organisms in CF patients due to its ability to establish chronic infections, characterized by the overproduction of an exopolysaccharide called alginate. Alginate overproduction (a phenotype called mucoidy) increases P. aeruginosa resistance against antimicrobials and phagocytosis and is a hallmark of clinical decline and worsening prognosis in patients with CF.Alginate production is regulated in a complex manner by several transcriptional regulators, including the extracytoplasmic sigma factor AlgU (AlgT) (4-6). The activity of AlgU is increased in mucoid P. aeruginosa due to mutations in the mucA anti-sigma factor gene that releases AlgU from the inner membrane (6-8). The enzymes encoded by the algC gene and the algD operon are responsible for alginate biosynthesis, modification, and export. The AlgR transcriptional regulator is an essential activator for the algD operon and the algC gene; deletion of algR in mucoid P. aeruginosa backgrounds results in a nonmucoid phenotype (9-11). As part of its regulon, AlgU also activates the transcription of the algR gene to increase alginate production. An AlgU-dependent algR transcriptional start site was dete...
Sepsis inflammation accelerates myeloid cell generation to compensate for rapid mobilization of the myeloid progenitors from bone marrow. This inflammation-driven myelopoiesis, however, generates myeloid progenitors with immunosuppressive functions that are unable to differentiate into mature, innate immune cells. The myeloid-derived suppressor cells (MDSCs) expand markedly in the later phases of sepsis, suppress both innate and adaptive immunity, and thus, elevate mortality. Using a murine model with myeloid-restricted deletion of the C/EBPβ transcription factor, we show that sepsis-induced generation of MDSCs depends on C/EBPβ. C/EBPβ myeloid cell-deficient mice did not generate MDSCs or develop immunosuppression and survived sepsis. However, septic mice still generated Gr1CD11b myeloid progenitors at the steady-state levels similar to the control sham mice, suggesting that C/EBPβ is not involved in healthy, steady-state myelopoiesis. C/EBPβ-deficient Gr1CD11b cells generated fewer monocyte- and granulocyte-like colonies than control mice did, indicating reduced proliferation potential, but differentiated normally in response to growth factors. Adoptive transfer of C/EBPβ-deficient Gr1CD11b cells from late septic mice exacerbated inflammation in control mice undergoing early sepsis, confirming they were not immunosuppressive. These results show that C/EBPβ directs a switch from proinflammatory to repressor myeloid cells and identifies a novel treatment target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.