Advanced high-brightness beam applications such as inverse-Compton scattering (ICS) depend on achieving of ultrasmall spot sizes in high current beams. Modern injectors and compressors enable the production of high-brightness beams having needed short bunch lengths and small emittances. Along with these beam properties comes the need to produce tighter foci, using stronger, shorter focal length optics. An approach to creating such strong focusing systems using high-field, small-bore permanent-magnet quadrupoles (PMQs) is reported here. A final-focus system employing three PMQs, each composed of 16 neodymium iron boride sectors in a Halbach geometry has been installed in the PLEIADES ICS experiment. The field gradient in these PMQs is 560 T=m, the highest ever reported in a magnetic optics system. As the magnets are of a fixed field strength, the focusing system is tuned by adjusting the position of the three magnets along the beam line axis, in analogy to familiar camera optics. This paper discusses the details of the focusing system, simulation, design, fabrication, and experimental procedure in creating ultrasmall beams at PLEIADES.
The development of time-reversal (T/R) communication systems is a recent signal processing research area dominated by applying T/R techniques to communicate in hostile environments. The fundamental concept is based on time-reversing the impulse response or Green's function characterizing the uncertain communications channel to mitigate deleterious dispersion and multipath effects. In this paper, we extend point-to-point to array-to-point communications by first establishing the basic theory to define and solve the underlying multichannel communications problem and then developing various realizations of the resulting T/R receivers. We show that not only do these receivers perform well in a hostile environment, but they also can be implemented with a "1 bit" analog-to-digital converter design structure. We validate these results by performing proof-of-principle acoustic communications experiments in air. It is shown that the resulting T/R receivers are capable of extracting the transmitted coded sequence from noisy microphone array measurements with zero-bit error.
The development of multichannel time-reversal ͑T/R͒ processing techniques continues to progress rapidly especially when the need to communicate in a reverberant environment is critical. The underlying T/R concept is based on time-reversing the Green's function characterizing the uncertain communications channel mitigating the deleterious dispersion and multipath effects. In this paper, attention is focused on two major objectives: ͑1͒ wideband communications leading to a time-reference modulation technique; and ͑2͒ multichannel acoustic communications in two waveguides: a stairwell and building corridors with many obstructions, multipath returns, severe background noise, disturbances, and long propagation paths ͑ϳ180 ft͒ including disruptions ͑bends͒. It is shown that T/R receivers are easily extended to wideband designs. Acoustic information signals are transmitted with an eight-element array to two receivers with a significant loss in signal levels due to the propagation environment. The results of the new wideband T/R processor and modulation scheme demonstrate that the overall performance for both high ͑24-bit͒ and low ͑1-bit͒ bit level analog-to-digital converter designs. These results are validated by performing proof-of-principle acoustic communications experiments in air. It is shown that the resulting T/R receivers are capable of extracting the transmitted coded sequence from noisy microphone array measurements with zero-bit error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.