We participated in the fold recognition and homology sections of CASP5 using primarily in-house software. The central feature of our structure prediction strategy involved the ability to generate good sequence-to-structure alignments and to quickly transform them into models that could be evaluated both with energy-based methods and manually. The in-house tools we used include: a) HMAP (Hybrid Multidimensional Alignment Profile)-a profile-to-profile alignment method that is derived from sequence-enhanced multiple structure alignments in core regions, and sequence motifs in non-structurally conserved regions. b) NEST-a fast model building program that applies an "artificial evolution" algorithm to construct a model from a given template and alignment. c) GRASP2-a new structure and alignment visualization program incorporating multiple structure superposition and domain database scanning modules. These methods were combined with model evaluation based on all atom and simplified physical-chemical energy functions. All of these methods were under development during CASP5 and consequently a great deal of manual analysis was carried out at each stage of the prediction process. This interactive model building procedure has several advantages and suggests important ways in which our and other methods can be improved, examples of which are provided.
In this study, we investigate the extent to which techniques for homology modeling that were developed for water-soluble proteins are appropriate for membrane proteins as well. To this end we present an assessment of current strategies for homology modeling of membrane proteins and introduce a benchmark data set of homologous membrane protein structures, called HOMEP. First, we use HOMEP to reveal the relationship between sequence identity and structural similarity in membrane proteins. This analysis indicates that homology modeling is at least as applicable to membrane proteins as it is to water-soluble proteins and that acceptable models (with C alpha-RMSD values to the native of 2 A or less in the transmembrane regions) may be obtained for template sequence identities of 30% or higher if an accurate alignment of the sequences is used. Second, we show that secondary-structure prediction algorithms that were developed for water-soluble proteins perform approximately as well for membrane proteins. Third, we provide a comparison of a set of commonly used sequence alignment algorithms as applied to membrane proteins. We find that high-accuracy alignments of membrane protein sequences can be obtained using state-of-the-art profile-to-profile methods that were developed for water-soluble proteins. Improvements are observed when weights derived from the secondary structure of the query and the template are used in the scoring of the alignment, a result which relies on the accuracy of the secondary-structure prediction of the query sequence. The most accurate alignments were obtained using template profiles constructed with the aid of structural alignments. In contrast, a simple sequence-to-sequence alignment algorithm, using a membrane protein-specific substitution matrix, shows no improvement in alignment accuracy. We suggest that profile-to-profile alignment methods should be adopted to maximize the accuracy of homology models of membrane proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.