An Engineered Geothermal System (EGS) pilot project was commissioned to prove the economic viability of an industrial scale geothermal heat plant in Finland. The project aims to generate 40 MW of emission free heat energy, supplying up to 10% of the city of Espoo’s district heating needs. Two wells of 6400 m MD and 6213 m MD (measured depth) were drilled through formations of hard, abrasive granitic gneiss with maximum measured 560 MPa UCS (unconfined compressive strength). Typical dull conditions of lost and worn cutting structure and gauge diameter wear of between 3/16-in to ¼-in contributed to excessive torque, stuck incidences, low rate of penetration (ROP) and difficulties achieving build rate. To address these drilling challenges, this paper explores the interplay between new cemented carbide compact technology, drill bit design, and drilling parameter road mapping. The directional section of the first well was drilled with an average ROP below 2 m/hr and run length averaging 56 m per bit. The well took 246 drilling days and 44 BHAs (bottom hole assemblies) to achieve TD (total depth). Between the first and second well an application specific drill bit design package and step-wise parameter program were implemented. Design enhancements included improved gauge protection, bit hydraulics for minimizing cone erosion and subsequent TCI (tungsten carbide insert) compact loss. Novel hybrid TCI materials technology was introduced having a 100% improvement in wear resistance and durability as compared with conventional grades, to drill these hard and abrasive granitic formations. New BHAs and drilling plan were selected based on the bit design selection to reduce wear on BHA components, improve directional control and reducing drilling dysfunctions. Once these factors were under control, a low risk approach to extending the bit revolution limits (krev) for the roller cone sealed bearings could be implemented based on downhole parameters and previous bit dulls, leading to longer run lengths. The combination of bit design and material enhancements with a properly selected BHA and drill plan increased run lengths and ROP. The second well’s 8.5-in directional section was drilled with a 13% increase in average ROP and a 69% increase in average run length without exceeding krev limits. Well on well, a 77 day reduction in AFE (authorization for expenditure) was realized. We demonstrated the combination of oil and gas bit and BHA design, drilling plan, and new cutting material capabilities can reduce EGS well construction costs in order to make these renewable energy sources economical.
Underbalanced drilling via air drilling is deeply rooted in the Northeast United States due to its distinct geology, high rates of penetration (ROP) and drilling efficiency, and low cost of circulating material. The active drilling programs of several independent operators in the Marcellus and Utica Basins are well suited for air drilling down to the final kick off point by virtue of competent, stable formations, low static reservoir pressures, and manageable water ingress to the wells. Air drilling provides near-atmospheric pressure at the borehole bottom, since there is no fluid column with resulting hydrostatic pressure. The result is very high ROP with essentially 100% drilling efficiency, allowing the completion of intervals in one or two bit runs. A service company deployed a cross-functional product development team to optimize oilfield air bits for these applications over the last two years, resulting in decreased drilling costs through increased performance and reliability. The oilfield air drilling environment places unique challenges on drill bit design due to the increased risk of downhole vibrations, corrosion, abrasive wear, heat generation, and seal infiltration of very fine cuttings. The application requirements have increased due to deeper intervals requiring passage through multiple high unconfined compressive strength formations, extended tangent angles, and rising input energy levels. Accordingly, enhancements to both the cutting structures and sealed bearing systems were vigorously pursued. Several cutting structure design iterations were evaluated in both laboratory and field tests. A new sealed bearing system was developed and implemented for increased life and reliability. Modifications to the bit body for stability were included, and the bit hydraulics were further optimized. Through an understanding of the objectives and application challenges, unique solutions were developed for Northeast oilfield air drilling applications. The optimization process for the new air bit designs is described, and the resulting positive performance metrics are presented. Improvements were observed in distance drilled, ROP, seal effective rate, and dull condition. Lessons learned were also used to refine the recommended drilling parameters and practices through the challenging formations encountered in these tangent sections, which can span in excess of 7000 feet. These enhancements all contributed to reduced drilling cost and days per well, for increased rig productivity. The natural gas fields throughout the Marcellus and Utica Basins in the Northeast U.S. continue to deliver rising total gas production for the U.S. and the world through increased capacities in pipelines and LNG trains. Improved drilling performance as documented in this paper are driving continuous improvement in the overall upstream drilling economics of the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.