According to Robert McSweeney, in light of a new study: “Conditions in the GCC could become so hot and humid in the coming years that staying outside for more than six hours will become difficult”. He is a climate analyst at CARBON BRIEF, a nonprofit temperature and climate analysis group. He also states that changes there can help give us an idea of what the rest of the world can expect if we do not reduce the emissions that pollute homes and factories. Because of the high temperatures in GCC countries, the effect of heat stress is very high there, which discourages shoppers and pedestrians from shopping in the open area due to the physical exertion and high risks faced by people and workers. Heat stress peaks in most Arab Gulf countries from 11:00 a.m. to 4:00 p.m. during the summer season. Heat stress is increasingly an obstacle to economic efficiency in these countries. This work designs and develops a robot that tracks shoppers and provides a cool stream of air directly around them during shopping in open areas to reduce the effect of heat stress. The robot enables us to cool the temperature around customers in the market to increase comfort. In this project, a robot was designed and manufactured to track a specific person and cool the air around him through a cool stream of air generated by the air conditioner installed inside the robot. We used a Raspberry Pi camera sensor to detect the target person and interact with a single-board computer (Raspberry Pi 3) to accomplish this design and the prototype. Raspberry Pi controls the air-conditioning robot to follow the movement of the target person. We used image processing to discover the target shopper, the control system, and then guide the bot. In the meantime, the robot must also bypass any potential obstacles that could prevent its movement and cause a collision. We made a highly efficient design that can synchronize between the software algorithm and the mechanical platform of the robot. This work is merely the combination of a cool stream of air and a robot that follows a human.
No abstract
The research aims to show the ability to convert the Fused Deposition Modeling 3D printer to be compatible with the clay mixture after modifying the structure, setting up Cura software, and changing the print head technology. This solution provides research teams and scientists with opportunities in several ways (manufacture patch antenna substrate, dielectric automobile sensors, and ceramic dielectric aerospace technology). Additive manufacturing allows the production of many intricate shapes with ceramics, which is difficult with a traditional method. This paper used WASP ceramic slurry as raw material for Liquid Deposition Modeling (LDM) of various samples using the Archimedes screw and air pressure dispensing technique (a two-step process). LDM is a low-cost and straightforward technology appropriate for the clay prototype scale. Different clay-built shapes have been produced with water-to-clay ratios ranging from 0.57 to 0.69. The effect of the nozzle size in printing experiment tests is demonstrated. The experiment tested the print head (extruder) mechanism, the properties of the materials suitable for the putty, and how the wet slurry material is extruded from the nozzle. The optimum air pressure and slicing configuration for efficient printing are provided. Samples were stress-tested after they were dried for 24 h at average laboratory temperature and then exposed to 1000$$^\circ $$ ∘ for 1 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.