A series of experiments designed to demonstrate the potential of using managed, attached algal production to permanently remove excess phosphorus from agricultural run‐off is described. The experiments were carried out on a secondary canal in the New Hope South region of the Florida Everglades Agricultural Area from October, 1991, to May, 1992. Natural algal populations of periphyton, including species of the genera Cladophora, Spirogyra, Enteromorpha, Stigeoclonium, and a variety of filamentous diatoms such as Eunotia and Melosira, were grown on plastic screens in raceways, under a wave surge regime. Considerable biomass production of algae occurred, and the resulting algal canopy also trapped plankton and organic particulates from the water column. A seven‐ to eight‐day harvest interval was determined to be optimal, and both hand harvesting and vacuum harvesting were employed. The vacuum device is applicable to large scale‐up. In source water having total phosphorus concentrations of 0.012–0.148 ppm, mean macro‐recovery dry biomass production levels of 15–27 g/m2/day were achieved. The lower rates occurred in the winter, the higher rates in the late spring. Two techniques were employed to reduce losses of fine material at harvest during the March to May period. Gravity sieving increased mean dry production levels to 33–39 g/m2/day. The mean phosphorus content of harvested biomass ranged from 0.34% to 0.43%. Total phosphorus removal rates during the spring period of average solar intensity and low nutrient supply, by methods demonstrated in this study, ranged from 104 to 139 mgTP/m2/day (380–507 kgP/ha/year). Over the incoming nutrient range studied, phosphorus removal was independent of concentration and was 16.3% of total phosphorus for 15 m of raceway. Up‐stream‐downstream studies of overflowing water chemistry (total P, total dissolved ‐P, orthophosphate ‐P) showed highly ‐significant reductions of all phosphorus species. Total phosphorus reduction closely correlated with phosphorus yield from biomass removal. Yearly, minimum phosphorus removal rates are predicted that are 100–250 times that achieved both experimentally and in long‐term, large‐area wetland systems. Engineering scale‐up to systems of hundreds of acres is being studied.
The main historical archive of all tropical storms, subtropical storms, and hurricanes in the North Atlantic Ocean, Caribbean Sea, and Gulf of Mexico from 1851 to the present is known as the Atlantic hurricane database (HURDAT), which is the fundamental database for meteorological, engineering, and financial studies of these cyclones. Previous work has demonstrated that a reanalysis of HURDAT is necessary because it contains many random errors and systematic biases. The Atlantic Hurricane Reanalysis Project is an ongoing effort to correct the errors in HURDAT and to make HURDAT as accurate a database as possible with utilization of all available data. For this study, HURDAT is reanalyzed for the period 1944-53, the first decade of the ''aircraft reconnaissance era.'' The track and intensity of each existing tropical cyclone in HURDAT are reassessed, and previously unrecognized tropical cyclones are discovered, analyzed, and recommended to the HURDAT Best Track Change Committee for inclusion into HURDAT (existing tropical cyclones may be removed from the database as well if analyses indicate evidence that no tropical storm existed). Changes to the number of tropical storms, hurricanes, major hurricanes, accumulated cyclone energy, and U.S. landfalling hurricanes are recommended for most years of the decade. Estimates of uncertainty in the reanalyzed database for the decade are also provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.